›› 2014, Vol. 35 ›› Issue (11): 3073-3078.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Change rules of strength and zeta potential of sandstone with organic silicon material modification

CHAI Zhao-yun, ZHANG Ya-tao, ZHANG Peng, GUO Jun-qing, KANG Tian-he   

  1. Institute of Mining Technology, Taiyuan University of Technology, Taiyuan 030024, China
  • Received:2013-07-28 Online:2014-11-11 Published:2014-12-10

Abstract: In light of the present situation of engineering rock mass stability control problem caused by strength deterioration of rock under wetting-drying cycles, taking the coal seam roof No.8 medium grained feldspar quartz sandstone of Baode coal mine in Xinzhou, Shanxi province, China, for example, modified tests by organic silicon material were carried out. The strength damage and deterioration rules of sandstone for modified and unmodified under different wetting-drying cycles were studied by uniaxial compression tests; the change rules of surface zeta potentials of sandstone for modified and unmodified were comparatively analyzed by electrophoresis; and modification mechanism of organic silicon material modified sandstone is discussed. The results show that: (1) The uniaxial compression strength (UCS), elastic modulus (E) and deformation modulus (Ed) of sandstone samples are increased obviously by modification, and raising the UCS, E and Ed of sandstone samples by 2.17%, 22.2% and 23% respectively. (2) The strength deterioration effect is obvious under wetting-drying cycles; and the UCS, E and Ed of sandstone samples decrease by negative exponent relationship with wetting-drying cycle times increase. (3) Organic silicon material greatly affects the surface of electrical behavior of sandstone; with the pH values of sandstone suspension samples decreasing, the surface electrical potential of sandstone varies from electronegative to electrically neutral and to electropositive in the end.

Key words: sandstone, uniaxial compressive strength, organic silicon material, zeta potential, modification

CLC Number: 

  • TU 452
[1] YANG Fu-jian, HU Da-wei, TIAN Zhen-bao, ZHOU Hui, LU Jing-jing, LUO Yu-jie, GUI Shu-qiang, . Evolution and mechanism of permeability of unconsolidated sandstone under high hydrostatic pressure compaction [J]. Rock and Soil Mechanics, 2020, 41(1): 67-77.
[2] LIU Bo, MA Yong-jun, SHENG Hai-long, CHANG Ya-ru, YU Jun-jie, JIA Shuai-long, . Experiments on mechanical properties of Cretaceous red sandstone after freeze-thaw process [J]. Rock and Soil Mechanics, 2019, 40(S1): 161-171.
[3] DING Chang-dong, ZHANG Yang, YANG Xiang-tong, HU Da-wei, ZHOU Hui, LU Jing-jing, . Permeability evolution of tight sandstone under high confining pressure and high pore pressure and its microscopic mechanism [J]. Rock and Soil Mechanics, 2019, 40(9): 3300-3308.
[4] ZHAO Bo, ZHANG Guang-qing, TANG Mei-rong, ZHUANG Jian-man, LIN Can-kun, . Mechanism of the effect of long-term water injection on mechanical properties of tight sandstone [J]. Rock and Soil Mechanics, 2019, 40(9): 3344-3350.
[5] TIAN Jun, LU Gao-ming, FENG Xia-ting, LI Yuan-hui, ZHANG Xi-wei. Experimental study of the microwave sensitivity of main rock-forming minerals [J]. Rock and Soil Mechanics, 2019, 40(6): 2066-2074.
[6] WANG Qi , SUN Hui-bin , JIANG Bei , GAO Song , LI Shu-cai , GAO Hong-ke, . A method for predicting uniaxial compressive strength of rock mass based on digital drilling test technology and support vector machine [J]. Rock and Soil Mechanics, 2019, 40(3): 1221-1228.
[7] XU Bao-tian, ZHANG Li-ping, YAN Xiao-ying, QIU De-jun, . Effect of void characteristics on deteriorating rules of sandstone due to water [J]. Rock and Soil Mechanics, 2019, 40(2): 561-569.
[8] ZHENG Guang-hui, XU Jin-yu, WANG Peng, FANG Xin-yu, WANG Pei-xi, WEN Ming, . Physical characteristics and degradation model of stratified sandstone under freeze-thaw cycling [J]. Rock and Soil Mechanics, 2019, 40(2): 632-641.
[9] XIE Kai-nan, JIANG De-yi, SUN Zhong-guang, SONG Zhong-qiang, WANG Jing-yi, YANG Tao, JIANG Xiang, . Influence of drying-wetting cycles on microstructure degradation of argillaceous sandstone using low field nuclear magnetic resonance [J]. Rock and Soil Mechanics, 2019, 40(2): 653-659.
[10] JIANG De-yi, ZHANG Shui-lin, CHEN Jie, YANG Tao, WANG Xiao-shu, XIE Kai-nan, JIANG Xiang, . Low filed NMR and acoustic emission probability density study of freezing and thawing cycles damage for sandstone [J]. Rock and Soil Mechanics, 2019, 40(2): 436-444.
[11] YU Jin, ZHANG Xin, CAI Yan-yan, LIU Shi-yu, TU Bing-xiong, FU Guo-feng, . Meso-damage and mechanical properties degradation of sandstone under combined effect of water chemical corrosion and freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(2): 455-464.
[12] DING Yu, CHEN Xiao-bin, ZHANG Jia-sheng, JIA Yu, . Experimental study of dynamic water pressure in transient saturated zone of red sandstone residual soil subgrade [J]. Rock and Soil Mechanics, 2019, 40(12): 4740-4750.
[13] YUAN Peng-bo, YANG Xuan-yu, ZHAO Tian-yu, . Deterioration characteristics of red-bed sandstone acoustic wave properties due to water and salt solution [J]. Rock and Soil Mechanics, 2019, 40(1): 227-234.
[14] LI Guo-wei, SHI Sai-jie, HOU Yu-zhou, WU Jian-tao, LI Feng, WU Shao-p, . Experimental study of development technology of non-expansive soil in Yangtze River to Huaihe River water diversion experimental project [J]. Rock and Soil Mechanics, 2018, 39(S2): 302-314.
[15] LE Hui-lin, SUN Shao-rui. Effect of grouting materials and inclination angle of pre-existing flaw on uniaxial compressive strength and failure mode of rock-like specimens [J]. , 2018, 39(S1): 211-219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[2] LI Jing,MIAO Lin-chang,ZHONG Jian-chi,FENG Zhao-xiang. Deformation and damping characteristics of EPS beads-mixed lightweight soil under repeated load-unloading[J]. , 2010, 31(6): 1769 -1775 .
[3] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[4] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[5] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[6] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[7] CHEN Li-wen, SUN De-an. Bifurcation analysis of overconsolidated clays with soil-water coupling along different stress paths[J]. , 2011, 32(10): 2922 -2928 .
[8] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .
[9] MA Gang , CHANG Xiao-lin , ZHOU Wei , ZHOU Chuang-bing . Deep anti-sliding stability analysis of gravity dam based on Cosserat continuum theory[J]. , 2012, 33(5): 1505 -1512 .
[10] WANG Song-he,QI Ji-lin. Experimental study of relaxation characteristics of warm permafrost[J]. , 2012, 33(6): 1660 -1666 .