›› 2015, Vol. 36 ›› Issue (1): 205-211.doi: 10.16285/j.rsm.2015.01.028

• Geotechnical Engineering • Previous Articles     Next Articles

Mechanism of fracture propagation via numerical stimulation of reservoir volume fracture in shale reservoirs

PAN Lin-hua1, 2, 3,CHENG Li-jun1, 2, 3,ZHANG Shi-cheng4,GUO Tian-kui5,LIU Kai-yu6   

  1. 1. Key Laboratory of Shale Gas Exploration,Ministry of Land and Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 400042, China; 2. Chongqing Engineering Research Center for Shale Gas Resources & Exploration, Chongqing Institute of Geology and Mineral Resources, Chongqing 400042, China; 3. Chongqing Shale Gas Research Center of State Key Laboratory of Petroleum Resources and Prospecting, Chongqing 400042, China; 4. Faculty of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China; 5. Faculty of Petroleum Engineering, China University of Petroleum (Huadong), Qingdao, Shangdong 266580, China; 6. Downhole Operation Company of Great Wall Drilling Company, Panjin, Liaoning 124000, China
  • Received:2013-08-12 Online:2015-01-12 Published:2018-06-13

Abstract: Due to the highly developed natural fractures and horizontal beddings in shale reservoirs, it is possible to generate complex volume fractures during hydraulic fracture treatment. In order to investigate the propagation process of complex fracture network, a three dimensional finite element model for volume fracture propagation of hydraulic fracture in shale reservoirs is built using fluid-solid coupling basic equations in porous medium and basic theory of damage mechanics. The numerical simulation results are in good accordance with laboratory experiment of shale fracture propagation, which prove the reliability of the numerical model. After a series of numerical simulations, some conclusions are drawn as follws: (1) The horizontal beddings can open and form horizontal fractures in hydraulic fracturing. They can intersect with vertical fractures and finally generate complex volume fracture network. (2) As the horizontal stress difference increases, the length of stimulated reservoir volume (SRV) can increase and the width can decrease, which means the ratio of length to width of SRV can increase. The length is the distribution distance of volume fracture along horizontal maximum principal insitu stress. The width is the distribution distance of volume fracture along horizontal minimum principal insitu stress. (3) As the pump rate of fracturing increases, the SRV length can decrease, width can increase, and the ratio of length to width of SRV can decrease accordingly. (4) When the residual tensile strength of the natural fracture becomes stronger, the width of SRV can decrease, the length and the ratio of length to width of SRV can increase. Research results can offer some references for hydraulic fracture design and operation of shale gas in China.

Key words: shale reservoir, natural fracture, horizontal bedding, fracture propagation, volume fracture

CLC Number: 

  • TE 357
[1] ZHANG Fan, MA Geng, FENG Dan, . Hydraulic fracturing simulation test and fracture propagation analysis of large-scale coal rock under true triaxial conditions [J]. Rock and Soil Mechanics, 2019, 40(5): 1890-1897.
[2] ZHANG Bo, LI Yao, YANG Xue-ying, ZHU Piao-yang, ZHU Chun-di, LIU Zi-hao, LIU Wen-jie, LUO Zhi-heng, . Design and application of a hydraulic pressure supply device for hydraulic fracturing experiments [J]. Rock and Soil Mechanics, 2019, 40(5): 2022-2028.
[3] JIANG Ting-ting, ZHANG Jian-hua, HUANG Gang, . Experimental study of fracture geometry during hydraulic fracturing in coal [J]. , 2018, 39(10): 3677-3684.
[4] WANG Lei, YANG Chun-he, HOU Zhen-kun, GUO Yin-tong, WEI Yuan-long, JIANG Ting-xue,. Initiation and propagation of hydraulic fractures under the condition of prefabricated transverse fracture [J]. , 2016, 37(S1): 88-94.
[5] ZHAO Yu, WANG Chao-lin, WAN Wen,. Seepage flow during crack propagation process and stress coupled model under compression-shear stress conditions [J]. , 2016, 37(8): 2180-2186.
[6] GONG Di-guang, QU Zhan-qing, LI Jian-xiong, QU Guan-zheng, CAO Yan-chao, GUO Tian-kui. Extended finite element simulation of hydraulic fracture based on ABAQUS platform [J]. , 2016, 37(5): 1512-1520.
[7] HOU Zhen-kun , YANG Chun-he , WANG Lei , LIU Peng-jun , GUO Yin-tong ,. Hydraulic fracture propagation of shale horizontal well by large-scale true triaxial physical simulation test [J]. , 2016, 37(2): 407-414.
[8] SHI Lu-yang , LI Jian , XU Xiao-rui , YU Tian-tang,. Influence of hydraulic fracturing on natural fracture in rock mass [J]. , 2016, 37(10): 3003-3010.
[9] ZHONG Guan-yu, WANG Rui-he, ZHOU Wei-dong, YANG Huan-qiang. Failure characteristics of natural fracture in the vicinity of hydrofractures [J]. , 2016, 37(1): 247-255.
[10] LIU Quan-sheng, LIU Xue-wei. Research on critical problem for fracture network propagation and evolution with multifield coupling of fractured rock mass [J]. , 2014, 299(2): 305-321.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[5] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[6] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[7] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[8] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .
[9] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .
[10] WANG Guo-cui, YANG Min. Nonlinear analysis of laterally loaded piles in sand[J]. , 2011, 32(S2): 261 -267 .