›› 2016, Vol. 37 ›› Issue (8): 2180-2186.doi: 10.16285/j.rsm.2016.08.008

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Seepage flow during crack propagation process and stress coupled model under compression-shear stress conditions

ZHAO Yu1, 2, WANG Chao-lin1, 3, WAN Wen3   

  1. 1. College of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Key Laboratory of New Technology for Construction of Cities in Mountain Area of Ministry of Education, Chongqing University, Chongqing 400045, China; 3. Key Laboratory of Geotechnical Engineering Stability Control and Health Monitoring of Hunan Province, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
  • Received:2016-04-05 Online:2016-08-11 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51374257, 50804060), the New Century Excellent Talent Foundation from MOE of China(NCET-09-0844) and Geotechnical Engineering Stability Control and Health Monitoring of Hunan Province Key Laboratory, China(E21619).

Abstract: The dilatancy and propagation of cracks under compression and shearing are essential to hydromechanical behavior of fractured rock masses. To explore the influence of dilatancy and crack propagation on seepage flow, a new shear constitutive model is developed to describe the features of the pre- and post-shear curves based on residual strength of rocks. Then, by combining the relationship between shear deformation and fracture aperture, a coupled stress-seepage model for fractured rock mass subject to shear dilation process is derived by the minimum potential energy principle and cubic law. In addition, a formulation for determining fracture aperture during crack growth process is obtained by assuming the initiation of mode-I cracks under compression-shear conditions. This model can not only consider shear dilation of rocks, but also imply the effect of crack propagation on the evolution of seepage flow. It is found that the newly developed shear constitutive model is suitable for shear displacement curves with different rough surfaces. A stress dependent seepage model is established by applying the shear constitutive model and is validated by existing coupled shear-flow tests, which is capable of predicting the changes in hydraulic properties of fractured rock masses under compression-shear stress conditions. It is noticed that the stress-seepage model is reliable to reflect hydromechanical behavior of crack propagation by applying the equivalent fracture to the representative of different fractures.

Key words: fracture aperture, fracture propagation, hydraulic conductivity, shear dilatancy

CLC Number: 

  • TU 451

[1] LIU Yi-zhao, LU Yang, LIU Song-yu, . Study on chemical compatibility of amended cement-soil vertical cutoff wall permeated with heavy metal solutions [J]. Rock and Soil Mechanics, 2023, 44(2): 497-506.
[2] HOU Juan , ZHANG Jin-bang, SUN Yin-yu, SUN Rui, LIU Fei-yu. Effect of particle swelling on hydraulic performance and meso-mechanism of geosynthetic clay liners [J]. Rock and Soil Mechanics, 2023, 44(10): 3039-3048.
[3] ZHOU Shi-ji, DU Yan-jun, NI Hao, SUN Hui-yang, LI Jiang-shan, YANG Yu-ling, . Mechanisms analysis of the effect of compaction degree on the properties of arsenic and antimony co-contaminated soil stabilized by ferric salts [J]. Rock and Soil Mechanics, 2022, 43(2): 432-442.
[4] LIU A-qiang, LI Xu, LIU Yan, ZHANG Zhi-yuan. A rapid determination method of hydraulic conductivity in full suction range [J]. Rock and Soil Mechanics, 2022, 43(11): 3209-3219.
[5] ZHAN Liang-tong , DING Zhao-hua, XIE Shi-ping, LI Yu-chao, HE Shun-hui, . Test and analysis of hydraulic conductivity of geosynthetic clay liners overlap in vertical barrier wall [J]. Rock and Soil Mechanics, 2021, 42(9): 2387-2394.
[6] LIU Li, WU Yang, LI Xu, ZHAO Yu-xin, . Influence of compaction on hydraulic properties of widely-graded soil [J]. Rock and Soil Mechanics, 2021, 42(9): 2545-2555.
[7] XUE Yang, WU Yi-ping, MIAO Fa-sheng, LI Lin-wei, LIAO Kang, ZHANG Long-fei. Seepage and deformation analysis of Baishuihe landslide considering spatial variability of saturated hydraulic conductivity under reservoir water level fluctuation [J]. Rock and Soil Mechanics, 2020, 41(5): 1709-1720.
[8] FAN Ri-dong, , DU Yan-jun, , LIU Song-yu, , YANG Yu-ling, . Experimental study on chemical compatibility of sand-bentonite backfills for vertical cutoff barrier permeated with inorganic salt solutions [J]. Rock and Soil Mechanics, 2020, 41(3): 736-746.
[9] PENG Jia-yi, ZHANG Jia-fa, SHEN Zhen-zhong, YE Jia-bing, . Effect of grain shape on pore characteristics and permeability of coarse-grained soil [J]. Rock and Soil Mechanics, 2020, 41(2): 592-600.
[10] WANG Gang, WEI Lin-yi, WEI Xing, ZHANG Jian-min. Permeability evolution of compacted clay during triaxial compression [J]. Rock and Soil Mechanics, 2020, 41(1): 32-38.
[11] XU Hao-qing, ZHOU Ai-zhao, JIANG Peng-ming, LIU Shun-qing, SONG Miao-miao, CHEN Liang, . Study on bentonite content of different sand-bentonite vertical cutoff wall backfill materials [J]. Rock and Soil Mechanics, 2019, 40(S1): 424-430.
[12] FAN Ri-dong, LIU Song-yu, DU Yan-jun, . Modified fluid loss test for measuring the hydraulic conductivity of heavy metal-contaminated bentonites [J]. Rock and Soil Mechanics, 2019, 40(8): 2989-2996.
[13] ZHANG Fan, MA Geng, FENG Dan, . Hydraulic fracturing simulation test and fracture propagation analysis of large-scale coal rock under true triaxial conditions [J]. Rock and Soil Mechanics, 2019, 40(5): 1890-1897.
[14] ZHANG Bo, LI Yao, YANG Xue-ying, ZHU Piao-yang, ZHU Chun-di, LIU Zi-hao, LIU Wen-jie, LUO Zhi-heng, . Design and application of a hydraulic pressure supply device for hydraulic fracturing experiments [J]. Rock and Soil Mechanics, 2019, 40(5): 2022-2028.
[15] LU Yong, ZHOU Guo-qing , YANG Dong-ying, SONG Jia-qing, . Explicit calculation of sand unified model combining shear dilatancy softening and shear shrinkage hardening [J]. Rock and Soil Mechanics, 2019, 40(3): 978-986.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIA Dong-zhou,HE Yi-bin,LIU Jian-hua. Analysis of aseismic capability and influential factors for rigid pile composite foundation-superstructure dynamic interaction system[J]. , 2009, 30(11): 3505 -3511 .
[2] ZHEN Wen-zhan,SUN De-an,DUAN Bo. Analysis of strain localization in overconsolidated clay specimens along different stress paths[J]. , 2011, 32(1): 293 -298 .
[3] WU Kai,SHENG Qian,MEI Song-hua,LI Jia. A model of PSO-LSSVM and its application to displacement back analysis[J]. , 2009, 30(4): 1109 -1114 .
[4] LIU Zhen, ZHOU Cui-ying, ZHU Feng-xian, ZHANG Lei. Critical criterion for microstructure evolution of soft rocks in softening process[J]. , 2011, 32(3): 661 -666 .
[5] LUO Yao-wu,HU Qi,LING Dao-sheng,CHEN Zheng,CHEN Yun-min. Model experimental research on effects of properties of interface between piles and sand on bearing behavior of uplift piles in sand[J]. , 2011, 32(3): 722 -726 .
[6] SUN Bing,ZENG Sheng,DING De-xin,QI Chun-ming,YU Qing. Research on transmit rules of stress wave with low strain in dynamic test pile and anchorage bolt[J]. , 2011, 32(4): 1143 -1148 .
[7] CHEN Zhen-hua , LI Ling-ling , WANG Li-zhong , XU Yan , YANG Yi. Analysis and material selection of reinforced geosynthetics in sea dike project[J]. , 2011, 32(6): 1824 -1830 .
[8] YAN Geng-sheng, ZHANG Hu-yuan, WANG Xiao-dong, YANG Bo, LI Min. Durability of earthen architecture ruins under cyclic freezing and thawing[J]. , 2011, 32(8): 2267 -2273 .
[9] ZHANG Bo , LI Shu-cai , ZHANG Dun-fu , LI Ming-tian , SHAO Dong-liang. Study of stress fields of simple harmonic wave propagation in viscoelastic media[J]. , 2011, 32(8): 2429 -2434 .
[10] GUO Xiao-hong , CHEN Fei-fei , CHU Yi-dun, QIAO Chun-jiang . Research on support techniques for tunnel in watery and weak stratum[J]. , 2011, 32(S2): 449 -454 .