›› 2006, Vol. 27 ›› Issue (S1): 893-896.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Bearing capacity calculation approach of composite subgrade in mining subsidence area

SHENG Ping, YU Guang-yun, LI Hong-bo, WANG Bo-ping   

  1. School of Architecture and Civil Engineering, China University of Mining And Technology, Xuzhou 221008, China
  • Received:2006-05-26 Published:2006-12-15

Abstract: Disturbed by underground mining, composite subgrade in mining subsidence area have large subsidence and horizontal displacement; however, normal bearing capacity calculation approach neglects this influence. Based on the research on the subsidence influence on composite subgrade bearing capacity, an analysis model is established; and a bearing capacity calculation approach of composite subgrade considering the subsidence influence is presented. By an engineering case of ground improvement of a railway bridge in mining subsidence area, if the subsidence influence is considered, the bearing capacity of composite subgrade decreases somewhat.

Key words: composite subgrade, bearing capacity, surface subsidence

CLC Number: 

  • TU 472
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • [1] LI Shu-zhao, WANG Zhong-chang, JIA Xu, HE Lin-lin, . Simplified calculation method for cyclic bearing capacity of suction anchors with taut mooring in soft clay [J]. Rock and Soil Mechanics, 2019, 40(5): 1704-1712.
    [2] ZONG Zhong-ling, LU Xian-long, LI Qin-song,. Comparison test of compression and uplift on pressure-static and grouting micropiles [J]. , 2018, 39(S1): 362-368.
    [3] ZHOU Jia-jin, GONG Xiao-nan, YAN Tian-long, ZHANG Ri-hong, . Behavior of sand filled nodular piles under compression in soft soil areas [J]. , 2018, 39(9): 3425-3432.
    [4] YIN Jun-fan, LEI Yong, CHEN Qiu-nan, LIU Yi-xin, DENG Jia-zheng,. Upper bound analysis of the punching shear failure of cave roof in karst area [J]. , 2018, 39(8): 2837-2843.
    [5] CAO Wen-gui, TAN Jian-hui, HU Wei-dong, . Upper bound of ultimate bearing capacity for the reinforced grounds [J]. , 2018, 39(6): 1955-1962.
    [6] LIU Xiao-ke, LU Qun, LU Shi-wei, LIU Chun-long, GUO Shao-long,. Vacuum penetration and ultimate pull-out capacity of low skirted suction caissons [J]. , 2018, 39(6): 2089-2098.
    [7] LI Hong-jiang, TONG Li-yuan, LIU Song-yu, BAO Hong-yan, YANG Tao, . Parameter sensitivity of horizontal bearing capacity of large diameter and super-long bored pile [J]. , 2018, 39(5): 1825-1833.
    [8] LI Ze, LIU Yi, ZHOU Yu, WANG Jun-xing,. Lower bound analysis of ultimate bearing capacity of stone masonry retaining wall slope using mixed numerical discretisation [J]. , 2018, 39(3): 1100-1108.
    [9] LI Lin, LI Jing-pei, ZHAO Gao-wen, CUI Ji-fei, . Time-dependent bearing capacity of a jacked pile based on the effective stress method [J]. Rock and Soil Mechanics, 2018, 39(12): 4547-4553.
    [10] XIAO Zhong, WANG Yan, WANG Yuan-zhan, LIU Ying, . Effect of bucket separation distance on bearing capacity of tetrapod bucket foundations and determination of optimal separation distance [J]. , 2018, 39(10): 3603-3611.
    [11] ZHENG Gang, YU Xiao-xuan, DU Juan, YIN Xin, ZHOU Hai-zuo, YANG Xin-yu, . Numerical analysis of ultimate bearing capacity of strip footings near slopes [J]. , 2018, 39(10): 3812-3820.
    [12] KONG Gang-qiang, PENG Huai-feng, ZHU Xi , GU Hong-wei, ZHOU Li-duo,. Model tests on bearing capacity of longitudinal section shaped pile under lateral load [J]. , 2018, 39(1): 229-236.
    [13] ZONG Zhong-ling, LU Xian-long, LI Qing-song, ZHANG Zhen-dong,. An experimental study of bearing capacity of post-grouting jacked steel pipe micropiles [J]. , 2017, 38(S2): 323-329.
    [14] WU Ze-xiang, JIN Yin-fu, JI Hui, YIN Zhen-yu,. Numerical simulation analysis of flat bottom pile drived into foundation of easily crushable sand [J]. , 2017, 38(S2): 330-336.
    [15] LI Lian-xiang, HU Feng, HU Xue-bo, ZHANG Jia-mian,. Development and application of new type of assembly recyclable soil nailing for foundation pit engineering [J]. , 2017, 38(S1): 113-122.
    Viewed
    Full text


    Abstract

    Cited

      Shared   
      Discussed   
    [1] CHENG Tao, YAN Ke-qin. Numerical simulation for influences of stress paths on earth's surface deformation[J]. , 2010, 31(2): 661 -666 .
    [2] GUAN Yun-fei,GAO Feng,ZHAO Wei-bing,YU Jin. Secondary development of modified Cambridge model in ANSYS software[J]. , 2010, 31(3): 976 -980 .
    [3] MI Hai-zhen, GAO Chun. Experimental study of expansive behaviors of quicklime[J]. , 2010, 31(4): 1253 -1256 .
    [4] SONG Fei,LIU Chao,ZHANG Jian-min,ZHENG Rui-hua. Development of centrifuge model test facility of retaining wall[J]. , 2010, 31(9): 3005 -3011 .
    [5] ZHANG Lu-ming, ZHENG Ming-xin, HE Min. Study of characteristics of matric suction in landslide slip soils before and after landslide control[J]. , 2010, 31(10): 3305 -3312 .
    [6] PAN Yue, ZHANG Yong, WANG Zhi-qiang. Catastrophe theoretical analysis of disintegrated outburst of a single coal shell in coal-gas outburst[J]. , 2009, 30(3): 595 -602 .
    [7] FU Cheng-hua, ZHOU Hong-bo, CHEN Sheng-hong. Equivalent mechanical model of joined rockmass reinforced by shotcrete lining and its application[J]. , 2009, 30(7): 1967 -1973 .
    [8] MENG Fan-bing , LIN Cong-mou , CAI li-guang , LI bo. Cumulative damage evaluation of clip rock in small-distance tunnels caused by blasting excavation and its application[J]. , 2011, 32(5): 1491 -1494 .
    [9] XU Zheng-ming, XUE Qiang, ZHAO Ying. Research on time effect of modified sludge composites by triaxial tests on mechanical properties[J]. , 2011, 32(6): 1713 -1718 .
    [10] CUI Wei, SONG Hui-fang, ZHANG She-rong, YAN Shu-wang. Numerical simulation of craters produced by explosion in soil[J]. , 2011, 32(8): 2523 -2528 .