›› 2006, Vol. 27 ›› Issue (S1): 1032-1035.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Reasons of rockburst and preventive measures in Junde Mine 296 π coal face up roadway

LI Jin-kui1, YAN Ru-ling2, XIA Hong-chun1, LI Wei1, DENG Chao-gu2   

  1. 1. Dalian University Academician Pioneering Park, Dalian 116622, China; 2. Hegang Mining Industry Group Comp, Junde Mine, Hegang 154100, China
  • Received:2006-07-21 Published:2006-12-15

Abstract: The mechanical model of rockburst in 296 π coal face up roadway is built based on geological conditions and in-site investigation; influence factors and their reactive regularities are anslysed. Rockburst mechanism and reality condition are discussed. Pressing and feasible preventive measureres are referred for rockburst in Junde Mine 296 π coal face.

Key words: rockburst mechanism, rockburst preventive messuures, rockburst

CLC Number: 

  • TD 823.86
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] ZHOU Hui, CHEN Jun, ZHANG Chuan-qing, ZHU Yong, LU Jing-jing, JIANG Yue, . Experimental study of the rockburst model material with low-strength and high-brittleness [J]. Rock and Soil Mechanics, 2019, 40(6): 2039-2049.
[2] SU Guo-shao, YAN Si-zhou, YAN Zhao-fu, ZHAI Shao-bin, YAN Liu-bin, . Evolution characteristics of acoustic emission in rockburst process under true-triaxial loading conditions [J]. Rock and Soil Mechanics, 2019, 40(5): 1673-1682.
[3] LUO Dan-ni, SU Guo-shao, HE Bao-yu, . True triaxial test on rockburst of granites with different water saturations [J]. Rock and Soil Mechanics, 2019, 40(4): 1331-1340.
[4] YAN Jian, HE Chuan, WANG Bo, MENG Wei, . Influence of high geotemperature on rockburst occurrence in tunnel [J]. Rock and Soil Mechanics, 2019, 40(4): 1543-1550.
[5] ZHAO Fei, WANG Hong-jian, HE Man-chao, YUAN Guang-xiang, LUO Yao-wu, . Acoustic emission characteristics of granite specimens with different heights in rockburst tests [J]. Rock and Soil Mechanics, 2019, 40(1): 135-146.
[6] WANG Zhi-dong, LI Li-yun, CHEN Tao, LIU Bing-quan, . Study of energy release in model tests on pillar rockburst [J]. Rock and Soil Mechanics, 2018, 39(S2): 177-185.
[7] ZHU Si-tao, JIANG Fu-xing, ZHU Hai-zhou, ZHANG Jun-jie, LIAN Hong-quan, HAN Guo-qing, . Study of mechanism of rockburst accident in heading face in high stress area [J]. Rock and Soil Mechanics, 2018, 39(S2): 337-343.
[8] XIANG Peng, JI Hong-guang, CAI Mei-feng, ZHANG Yue-zheng. Dynamic energy release mechanism and geometric scale feature of ejection rockburst source [J]. , 2018, 39(2): 457-466.
[9] SI Xue-feng, GONG Feng-qiang, LUO Yong, LI Xi-bing, . Experimental simulation on rockburst process of deep three-dimensional circular cavern [J]. , 2018, 39(2): 621-634.
[10] MA Chun-chi, LI Tian-bin, ZHANG Hang, WANG Jian-feng,. An evaluation and early warning method for rockburst based on EMS microseismic source parameters [J]. , 2018, 39(2): 765-774.
[11] MENG Wei, HE Chuan, WANG Bo, ZHANG Jun-bo, WU Fang-yin, XIA Wu-yang. Two-stage back analysis of initial geostress field in rockburst area based on lateral pressure coefficient [J]. , 2018, 39(11): 4191-4200.
[12] LIU Xin-jin, SU Guo-shao, FENG Xia-ting, YAN Liu-bin,YAN Zhao-fu, ZHANG Jie, LI Yan-fang. Dynamic prediction method of laboratory rockburst using sound signals [J]. , 2018, 39(10): 3573-3580.
[13] ZHANG Yan-bo, YANG Zhen, YAO Xu-long, LIANG Peng, TIAN Bao-zhu, SUN Lin,. Experimental study of rockburst early warning method based on acoustic emission cluster analysis and neural network identification [J]. , 2017, 38(S2): 89-98.
[14] CHEN Wei-zhong, MA Chi-shuai, TIAN Hong-ming, YANG Jian-ping,. Discussion on rockburst predictive method applying to TBM tunnel construction [J]. , 2017, 38(S2): 241-249.
[15] ZHANG Biao, DAI Xing-guo. A cloud model for predicting rockburst intensity grade based on index distance and uncertainty measure [J]. , 2017, 38(S2): 257-265.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[3] ZHAN Yong-xiang, JIANG Guan-lu. Study of dynamic characteristics of soil subgrade bed for ballastless track[J]. , 2010, 31(2): 392 -396 .
[4] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[5] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[6] LIU Jie, HE Jie, MIN Chang-qing. Contrast research of bearing behavior for composite foundation with tapered piles and cylindrical piles[J]. , 2010, 31(7): 2202 -2206 .
[7] LU Li, ZHANG Si-ping, ZHANG Yong-xing, HU Dai-wen, WU Shu-guang. Field pull-out test and behavior analysis of compression type rock anchor cables[J]. , 2010, 31(8): 2435 -2440 .
[8] LIU Han-long,TAO Xue-jun,ZHANG Jian-wei,CHEN Yu-min. Behavior of PCC pile composite foundation under lateral load[J]. , 2010, 31(9): 2716 -2722 .
[9] WANG Guan-shi,LI Chang-hong,HU Shi-li,FENG Chun,LI Shi-hai. A study of time-and spatial-attenuation of stress wave amplitude in rock mass[J]. , 2010, 31(11): 3487 -3492 .
[10] WANG Wei-ming, SUN Rui, CAO Zhen-zhong, YUAN Xiao-ming. Comparative study of features of liquefied sites at home and abroad[J]. , 2010, 31(12): 3913 -3918 .