›› 2015, Vol. 36 ›› Issue (S2): 73-80.doi: 10.16285/j.rsm.2015.S2.009

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Anisotropic rheological properties of quartz-mica schist under triaxial compression creep test

XIAO Ming-li1, 2, ZHUO Li1, 2, XIE Hong-qiang1, 2, HE Jiang-da1, 2   

  1. 1. State Key Laboratory of Hydraulics and Mountain River Engineering,Sichuan University, Chengdu, Sichuan 610065, China; 2. College of Water Resources & Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
  • Received:2014-10-21 Online:2015-08-31 Published:2018-06-14

Abstract: Triaxial compression creep tests on the quartz–mica schist from Danba, China, are carried out to illuminate the schist’s anisotropic creep characteristics. Samples are divided into two sets by the axial load direction, which is perpendicular or parallel to the rock bedding plane. Creep tests under different confining pressures used the multistage loading mode, which shows the creep variation of the quartz–mica schist, including instant deformation, attenuation creep, stable creep, and acceleration creep. A creep model with the Kachanov creep damage rule is adopted to describe the acceleration creep stage, and to estimate the rock creep parameters of the quartz–mica schist. The good agreement between the fitting and test curves indicates that this model can suitably describe the creep properties of a quartz–mica schist. Long-term yield strength, fracture morphology, instantaneous deformation parameters, and steady-state creep strain rate based on the results from the two sets of tests show that there are significant anisotropic creep properties in the quartz–mica schist. The relatively higher strength, shear modulus, bulk modulus, and viscosity of these samples, in which the bedding plane is perpendicular to the axial load, show that these samples perform better in terms of anti-deformability and damage resistance compared with the parallel sample set. The samples in which the bedding plane is perpendicular to the axial load mainly have shear failure modes; the other sample set show lateral expansion when the samples are damaged. The instantaneous deformation and stable creep rate of both test sets increase with increase of stress level.

Key words: triaxial creep test, anisotropy, creep damage model, Kachanov creep damage rule

CLC Number: 

  • TU 452
[1] XU Jie, ZHOU Jian, LUO Ling-hui, YU Liang-gui, . Study on anisotropic permeability model for mixed kaolin-montmorillonite clays [J]. Rock and Soil Mechanics, 2020, 41(2): 469-476.
[2] WANG Li-ye, ZHOU Feng-xi, QIN Hu, . Fractional creep model and experimental study of saturated saline soil [J]. Rock and Soil Mechanics, 2020, 41(2): 543-551.
[3] PENG Shou-jian, YUE Yu-qing, LIU Yi-xin, XU Jiang, . Anisotropic characteristics and shear mechanical properties of different genetic structural planes [J]. Rock and Soil Mechanics, 2019, 40(9): 3291-3299.
[4] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, CHEN Li, . Quantitative microstructure information extraction and microscopic morphology analysis of anisotropic schist [J]. Rock and Soil Mechanics, 2019, 40(7): 2617-2627.
[5] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, WANG Yan-chao, . Effect of water and microstructure on wave velocity anisotropy of schist and its mechanism [J]. Rock and Soil Mechanics, 2019, 40(6): 2221-2230.
[6] JIA Rui, LEI Hua-yang, . Experimental study of anisotropic consolidation behavior of Ariake clay [J]. Rock and Soil Mechanics, 2019, 40(6): 2231-2238.
[7] CAO Meng, YE Jian-hong, . Creep-stress-time four parameters mathematical model of calcareous sand in South China Sea [J]. Rock and Soil Mechanics, 2019, 40(5): 1771-1777.
[8] ZHANG Kun-yong, ZANG Zhen-jun, LI Wei, WEN De-bao, CHARKLEY Frederick Nai, . Three-dimensional elastoplastic model of soil with consideration of unloading stress path and its experimental verification [J]. Rock and Soil Mechanics, 2019, 40(4): 1313-1323.
[9] KE Zhi-qiang, WANG Huan-ling, XU Wei-ya, LIN Zhi-nan, JI Hua, . Experimental study of mechanical behaviour of artificial columnar jointed rock mass containing transverse joints [J]. Rock and Soil Mechanics, 2019, 40(2): 660-667.
[10] ZHOU Jian, CAI Lu, LUO Ling-hui, YING Hong-wei, . Limit equilibrium analysis of anisotropic soft clay stability against excavation basal heave [J]. Rock and Soil Mechanics, 2019, 40(12): 4848-4856.
[11] TIAN Yu, YAO Yang-ping, LU De-chun, DU Xiu-li, . Cross-anisotropic Mohr-Coulomb criterion and formula of passive earth pressure based on modified stress method [J]. Rock and Soil Mechanics, 2019, 40(10): 3945-3950.
[12] TANG Hong-xiang, WEI Wen-cheng. Finite element analysis of slope stability by coupling of strength anisotropy and strain softening of soil [J]. Rock and Soil Mechanics, 2019, 40(10): 4092-4100.
[13] ZHOU Hui, CHENG Guang-tan, ZHU Yong, ZHANG Chun-sheng, . Anisotropy of shear characteristics of rock joint based on 3D carving technique [J]. Rock and Soil Mechanics, 2019, 40(1): 118-126.
[14] LI Shen-zhen, SHA Peng, WU Fa-quan, WU Jie. Anisotropic characteristics analysis of deformation of layered rock mass [J]. Rock and Soil Mechanics, 2018, 39(S2): 366-373.
[15] ZHANG Yu, WANG Ya-ling, YU Jin, ZHANG Xiao-dong, LUAN Ya-lin,. Creep behavior and its nonlinear creep model of deep gypsum mudstone [J]. , 2018, 39(S1): 105-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[2] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[3] WANG Li-yan,JIANG Peng-ming,LIU Han-long. Mechanism analysis of residual liquefied deformation of breakwater during earthquake[J]. , 2010, 31(11): 3556 -3562 .
[4] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[5] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[6] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[7] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .
[8] ZHAO Ming-hua, LEI Yong, ZHANG Rui. Study of punching failure mode and safe thickness of pile foundation in karst region[J]. , 2012, 33(2): 524 -530 .
[9] MA Gang , CHANG Xiao-lin , ZHOU Wei , ZHOU Chuang-bing . Deep anti-sliding stability analysis of gravity dam based on Cosserat continuum theory[J]. , 2012, 33(5): 1505 -1512 .
[10] WANG Song-he,QI Ji-lin. Experimental study of relaxation characteristics of warm permafrost[J]. , 2012, 33(6): 1660 -1666 .