›› 2016, Vol. 37 ›› Issue (10): 2737-2745.doi: 10.16285/j.rsm.2016.10.001

• Fundamental Theroy and Experimental Research •     Next Articles

Dynamic characteristics of serpentinite under condition of high static load and frequent dynamic disturbance

TANG Li-zhong, CHENG Lu-ping, WANG Chun, SHU Ji-bu, WU Jian-li, CHEN Yuan   

  1. School of Resources & Safety Engineering, Central South University, Changsha, Hunan, 410083, China
  • Received:2014-12-18 Online:2016-10-11 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science Foundation of China(51474250) and the National Key Basic Research Project of China (973 Program) (2010CB732004).

Abstract: Based on the improved split Hopkinson pressure bar (SHPB) testing system with the rock coupled static and dynamic loads, dynamic experiments on serpentinite are conducted under the condition of different static axial compressions and frequent dynamic disturbance to research its dynamic deformation properties, dynamic peak stress and strain, energy variation and failure modes. The results show that in the process of frequent disturbance under the high static load, there is a positive correlation between the dynamic stress and strain of rock prior to the peak dynamic stress, but there are two different dynamic deformation phenomena, i.e. dynamic deformation rebound and non-rebound after the peak dynamic stress. With the increase of number of dynamic disturbance, the peak dynamic strain increases while the dynamic peak stress and the dynamic deformation modulus decrease, and the energy variation of rock changes from the release of energy from rock into the absorption of energy from dynamic disturbance. As the static axial compression is larger, the damage of rock during one impact disturbance is heavier, the impact disturbance number for rock failure is fewer, the failure mode of rock transfers from the tensile failure mode to the shear failure mode, and the fragmentation distribution of broken rock becomes more inhomogeneous, and fragments become larger. All these results will be helpful for us to reveal the failure mechanisms of deep rock mass under the high static stress and dynamic disturbance produced by frequent excavation and blasting, and prove the feasibility of adjusting static stress state and excavation blasting to maintain the long-term stability of surrounding rock in field site.

Key words: serpentinite, high static load, frequent dynamic disturbance, dynamic deformation behavior, energy variation, failure mode

CLC Number: 

  • TU 452

[1] LI Xiang, WANG Jing-tong, WEI Heng. Reliability analysis of rock tunnel stability based on interval non-probability under multiple failure modes [J]. Rock and Soil Mechanics, 2023, 44(8): 2409-2418.
[2] WANG Wei, ZHANG Kuan, CAO Ya-jun, CHEN Chao, ZHU Qi-zhi, . Anisotropic mechanical properties and brittleness evaluation of layered phyllite [J]. Rock and Soil Mechanics, 2023, 44(4): 975-989.
[3] LIN Hai, ZENG Yi-fan, ZHOU Chuang-bing, DONG Ping-xiao, SHI Jian-yong, . Experimental research on the shear characteristics of the composite liner consisting of wrinkled geomembrane and needle punched geosynthetic clay liner [J]. Rock and Soil Mechanics, 2023, 44(2): 355-361.
[4] XU Ming, YU Xiao-yue, ZHAO Yuan-ping, HU Jia-ju, ZHANG Xiao-ting. Analysis of seismic dynamic response and failure mode of bedding rock slope with laminated fractured structure [J]. Rock and Soil Mechanics, 2023, 44(2): 362-372.
[5] DENG Peng-hai, LIU Quan-sheng, HUANG Xing, PAN Yu-cong, BO Yin, . Combined finite-discrete element numerical study on the buckling failure mechanism of horizontally layered soft rock mass [J]. Rock and Soil Mechanics, 2022, 43(S2): 508-523.
[6] LI Di-yuan, GAO Fei-hong, LIU Meng, MA Jin-yin. Research on failure mechanism of stratified sandstone with pre-cracked hole under combined static-dynamic loads [J]. Rock and Soil Mechanics, 2021, 42(8): 2127-2140.
[7] LIU Hui, ZHENG Jun-jie, ZHANG Rong-jun. System failure probability analysis of cohesive slope considering the spatial variability of undrained shear strength [J]. Rock and Soil Mechanics, 2021, 42(6): 1529-1539.
[8] QI Fei-fei, ZHANG Ke, XIE Jian-bin, . Fracturing mechanism of rock-like specimens with different joint densities based on DIC technology [J]. Rock and Soil Mechanics, 2021, 42(6): 1669-1680.
[9] LI Xin-wei, YAO Zhi-shu, HUANG Xian-wen, LIU Zhi-xi, ZHAO Xiang, MU Ke-han, . Investigation of deformation and failure characteristics and energy evolution of sandstone under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2021, 42(6): 1693-1704.
[10] LIU Xin-rong, XU Bin, ZHOU Xiao-han, XIE Ying-kun, HE Chun-mei, HUANG Jun-hui, . Investigation on macro-meso cumulative damage mechanism of weak layer under pre-peak cyclic shear loading [J]. Rock and Soil Mechanics, 2021, 42(5): 1291-1303.
[11] WANG Dong-ying, YIN Xiao-tao, YANG Guang-hua, . Experimental study of the clamping effect of the suspension bridge tunnel-type anchorage [J]. Rock and Soil Mechanics, 2021, 42(4): 1003-1011.
[12] SHI Feng, LU Kun-lin, YIN Zhi-kai. Determination of three-dimensional passive slip surface of rigid retaining walls in translational failure mode and calculation of earth pressures [J]. Rock and Soil Mechanics, 2021, 42(3): 735-745.
[13] WANG Li, LI Gao, CHEN Yong, TAN Jian-min, WANG Shi-mei, GUO Fei, . Field model test on failure mechanism of artificial cut-slope rainfall in Southern Jiangxi [J]. Rock and Soil Mechanics, 2021, 42(3): 846-854.
[14] CUI Peng-bo, ZHU Yong-quan, LIU Yong, ZHU Zheng-guo, PAN Ying-dong, . Model test and particle flow numerical simulation of soil arch effect for unsaturated sandy soil tunnel [J]. Rock and Soil Mechanics, 2021, 42(12): 3451-3466.
[15] XU Peng-fei, DENG Hua-feng, ZHANG Heng-bin, PENG Meng, LI Guan-ye, JIANG Qiao, CHEN Xing-zhou, . Time-lag uniaxial compression failure characteristics of sandstone under different stress levels [J]. Rock and Soil Mechanics, 2021, 42(11): 3041-3050.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Kui, GAO Bo. Study of construction schemes for metro tunnel crossing river and bridge[J]. , 2010, 31(5): 1509 -1516 .
[2] YANG Bing, YANG Jun, CHANG Zai, GAN Hou-yi, SONG Er-xiang. 3-D granular simulation for compressibility of soil-aggregate mixture[J]. , 2010, 31(5): 1645 -1650 .
[3] XIAO Shi-guo,XIAN Fei,WANG Huan-long. 一种微型桩组合抗滑结构内力分析方法[J]. , 2010, 31(8): 2553 -2559 .
[4] YE Hai-lin, ZHENG Ying-ren, HUANG Run-qiu, DU Xiu-li, LI An-hong4, XU Jiang-bo. Study of application of strength reduction dynamic analysis method to aseismic design of anti-slide piles for landslide[J]. , 2010, 31(S1): 317 -323 .
[5] ZHANG Zhi-pei, PENG Hui, RAO Xiao. Numerical simulation study of grouting diffusion process in soft soil foundation[J]. , 2011, 32(S1): 652 -0655 .
[6] WU Li-zhou , ZHANG Li-min , HUANG Run-qiu. Analytic solution to coupled seepage in layered unsaturated soils[J]. , 2011, 32(8): 2391 -2396 .
[7] LIU Run , WANG Xiu-yan , LIU Yue-hui , WANG Wu-gang. Thermal buckling analysis of submarine buried pipelines with isolated prop initial imperfection[J]. , 2011, 32(S2): 64 -69 .
[8] LIANG Yao-zhe. Analysis of active earth pressure of rigid pile composite foundation[J]. , 2012, 33(S1): 25 -29 .
[9] HAN Jian-xin , LI Shu-cai , LI Shu-chen , YANG Wei-min , WANG Lei . Study of post-peak stress-strain relationship of rock material based on evolution of strength parameters[J]. , 2013, 34(2): 342 -346 .
[10] HUANG Da , CEN Duo-feng , HUANG Run-qiu . Influence of medium strain rate on sandstone with a single pre-crack under uniaxial compression using PFC simulation[J]. , 2013, 34(2): 535 -545 .