Rock and Soil Mechanics ›› 2018, Vol. 39 ›› Issue (12): 4437-4447.doi: 10.16285/j.rsm.2017.1998

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analytical solution for the non-circular hydraulic tunnel buried in the orthotropic rock mass

WANG Shao-jie, LÜ Ai-zhong, ZHANG Xiao-li   

  1. Institute of Hydroelectric and Geotechnical Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2017-10-08 Online:2018-12-11 Published:2018-12-31
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (11572126, 51704117) and the Fundamental Research Funds for the Central Universities (NCEPU2016XS59).

Abstract: The surrounding rock mass and the lining are regarded as orthotropic and isotropic medium, respectively, with continuous, homogeneous and linear-elastic properties. The effects of support delay and water pressure during tunnel operation are also taken into consideration. Based on the above assumptions and the power series method of complex variable theory, the analytical method and solution for the arbitrary-shaped hydraulic tunnel that is buried in the orthotropic rock mass is established. Taking an inverted U-shaped tunnel for example, the analytical solution is perfectly satisfied with the stress boundary condition on the inner boundary of lining and stress boundary condition on the contact interface between lining and surrounding rock mass. Besides, the displacement continuity condition along the contact boundary can also be accurately satisfied. The numerical solution simulated by finite element software ANSYS is introduced to be compared with the analytical solution. The comparison indicates that the analytical results are in good agreement with the numerical analysis. With the presented analytical method for the problem, the influences of anisotropic degree of surrounding rock mass, the angle of elastic symmetric plane and the water pressure are discussed based on investigating the stress and displacement distributions of lining and surrounding rock mass.

Key words: analytical method, orthotropic rock mass, lined hydraulic tunnel, arbitrary-shaped tunnel, water pressure

CLC Number: 

  • TU457
[1] ZHANG Xiao-ling, ZHU Dong-zhi, XU Cheng-shun, DU Xiu-li, . Research on p-y curves of soil-pile interaction in saturated sand foundation in weakened state [J]. Rock and Soil Mechanics, 2020, 41(7): 2252-2260.
[2] ZHANG Sheng, GAO Feng, CHEN Qi-lei, SHENG Dai-chao, . Experimental study of fine particles migration mechanism of sand-silt mixtures under train load [J]. Rock and Soil Mechanics, 2020, 41(5): 1591-1598.
[3] SHI Xu-chao, SUN Yun-de. Analysis of the evolution of excess pore water pressure in soft soil under linear unloading [J]. Rock and Soil Mechanics, 2020, 41(4): 1333-1338.
[4] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
[5] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[6] XIAO Yao, DENG Hua-feng, LI Jian-lin, ZHI Yong-yan, XIONG Yu. The deterioration effect of fractured rock mass strengthened by grouting method under long-term immersion [J]. Rock and Soil Mechanics, 2019, 40(S1): 143-151.
[7] GUO Yuan-cheng, LI Ming-yu, ZHANG Yan-wei, . Incremental analytical method for prestressed anchor and soil nail wall composite support system [J]. Rock and Soil Mechanics, 2019, 40(S1): 253-258.
[8] ZHANG Zhi-guo, HUANG Mao-song, YANG Xuan, . Analytical solution for dissipation of excess pore water pressure and soil consolidation settlement induced by tunneling under the influence of long-term leakage [J]. Rock and Soil Mechanics, 2019, 40(8): 3135-3144.
[9] MO Zhen-ze, WANG Meng-shu, LI Hai-bo, QIAN Yong-jin, LUO Gen-dong, WANG Hui, . Laboratory investigation on pore water pressure variation caused by filter cake effect during slurry-EPB shield tunneling in silty sand layer [J]. Rock and Soil Mechanics, 2019, 40(6): 2257-2263.
[10] HE Gui-cheng, LIAO Jia-hai, LI Feng-xiong, WANG Zhao, ZHANG Qiu-cai, ZHANG Zhi-jun. A coupled thermo- pore water-mechanical model for a weak interlayer in water saturated slope and its application [J]. Rock and Soil Mechanics, 2019, 40(5): 1663-1672.
[11] ZHANG Bo, LI Yao, YANG Xue-ying, ZHU Piao-yang, ZHU Chun-di, LIU Zi-hao, LIU Wen-jie, LUO Zhi-heng, . Design and application of a hydraulic pressure supply device for hydraulic fracturing experiments [J]. Rock and Soil Mechanics, 2019, 40(5): 2022-2028.
[12] XIA Tang-dai, ZHENG Qing-qing, CHEN Xiu-liang, . Predicting excess pore water pressure under cyclic loading with regular intervals based on cumulative dynamic deviator stress level [J]. Rock and Soil Mechanics, 2019, 40(4): 1483-1490.
[13] WANG Hua-bin, LI Jian-mei, JIN Yi-xuan, ZHOU Bo, ZHOU Yu, . The numerical methods for two key problems in rainfall-induced slope failure [J]. Rock and Soil Mechanics, 2019, 40(2): 777-784.
[14] DING Yu, CHEN Xiao-bin, ZHANG Jia-sheng, JIA Yu, . Experimental study of dynamic water pressure in transient saturated zone of red sandstone residual soil subgrade [J]. Rock and Soil Mechanics, 2019, 40(12): 4740-4750.
[15] MENG Yu-han, CHEN Zheng, FENG Jian-xue, LI Hong-po, MEI Guo-xiong, . Optimization of one-dimensional foundation with sand blankets under the non-uniform distribution of initial excess pore water pressure [J]. Rock and Soil Mechanics, 2019, 40(12): 4793-4800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!