Rock and Soil Mechanics ›› 2019, Vol. 40 ›› Issue (5): 1932-1939.doi: 10.16285/j.rsm.2018.0013

• Geotechnical Engineering • Previous Articles     Next Articles

Field experimental investigation on prestress loss law of anchor cable in foundation pits

YU Yu1, 2, LIU Xin-rong1, 2, LIU Yong-quan1, 2   

  1. 1. School of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Key Laboratory of New Technology for Construction of Cities in Mountain Area Ministry of Education, Chongqing University, Chongqing 400045, China
  • Received:2018-01-03 Online:2019-05-11 Published:2019-06-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41372356).

Abstract: The occurrence of the prestress loss of anchor cable is more commonly encountered in foundation pit due to the influences of the excavation and strength of the stratum. Field tests were carried out in a practical project to analyze the effects of the tension load, tension locking mode, length of unbonded segment and cyclic loading on the prestress loss of anchor cable. The occurrence mechanism of the prestressed loss of the anchor cable was discussed. The results show that the debonding slip between the anchored solid and the surrounding stratum is an important reason for the prestress loss. A greater anchor force will induce more substantial loss of the prestress. As for the dispersed anchor cables, single tension locking is beneficial for minimizing the prestress loss. The length of the unbonded segment has an effect on the stiffness of the anchor head:a shorter length of the unbonded segment will result in more substantial loss of the prestress. Furthermore, it is found that the plastic deformation of the anchorage will be further locked under more times of cyclic loadings, which as a result reduces the loss of the prestress. The relevant rules and conclusions can provide useful references for the design and construction of the foundation pit anchorage cable.

Key words: foundation pit, prestressed anchor cable, prestress loss, field test, debonding slip

CLC Number: 

  • TU 470
[1] ZHANG Xiao-lei, FENG Shi-jin, LI Yi-cheng, WANG Lei, . Field tests on surface vibration caused by high-speed railway operation in subgrade-viaduct transition section [J]. Rock and Soil Mechanics, 2020, 41(S1): 187-194.
[2] XU Ri-qing, CHENG Kang, YING Hong-wei, LIN Cun-gang, LIANG Rong-zhu, FENG Su-yang, . Deformation response of a tunnel under foundation pit unloading considering buried depth and shearing effect [J]. Rock and Soil Mechanics, 2020, 41(S1): 195-207.
[3] LI Ren-rong, KONG Gang-qiang, YANG Qing, SUN Guang-chao. Study on influence of flow velocity on heat transfer efficiency and thermal coupling characteristics of energy piles in pile-raft foundation [J]. Rock and Soil Mechanics, 2020, 41(S1): 264-270.
[4] GUO Jian, CHEN Jian, HU Yang. Time series prediction for deformation of the metro foundation pit based on wavelet intelligence model [J]. Rock and Soil Mechanics, 2020, 41(S1): 299-304.
[5] TONG Xing, YUAN Jing, JIANG Ye-xiang, LIU Xing-wang, LI Ying, . Calculation of layered unloading additional stress of foundation pit based on Mindlin solution and the analysis of multiple factors influencing the rebound deformation [J]. Rock and Soil Mechanics, 2020, 41(7): 2432-2440.
[6] WANG Cheng-tan, WANG Hao, QIN Wei-min, ZHONG Guo-qiang, CHEN Wu, . Evaluation of collapse possibility of deep foundation pits in metro stations based on multi-state fuzzy Bayesian networks [J]. Rock and Soil Mechanics, 2020, 41(5): 1670-1679.
[7] WANG Hong-xin, SHEN Xu-kai, . Heave-resistant stability analysis method of foundation pit considering support [J]. Rock and Soil Mechanics, 2020, 41(5): 1680-1689.
[8] YANG Xue-xiang, JIAO Yuan-fa, YANG Yu-yi, . Development and test of aerated inflation controlled anchors [J]. Rock and Soil Mechanics, 2020, 41(3): 869-876.
[9] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[10] WEI Gang, ZHANG Xin-hai, LIN Xin-bei, HUA Xin-xin, . Variations of transverse forces on nearby shield tunnel caused by foundation pits excavation [J]. Rock and Soil Mechanics, 2020, 41(2): 635-644.
[11] LI Jian, CHEN Shan-xiong, YU Fei, JIANG Ling-fa, DAI Zhang-jun. Discussion on mechanism of reinforcing high and steep slope with prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(2): 707-713.
[12] GUO Yuan-cheng, LI Ming-yu, ZHANG Yan-wei, . Incremental analytical method for prestressed anchor and soil nail wall composite support system [J]. Rock and Soil Mechanics, 2019, 40(S1): 253-258.
[13] DING Zhi, ZHANG Xiao, JIN Jie-ke, WANG Li-zhong, . Measurement analysis on whole excavation of foundation pit and deformation of adjacent metro tunnel [J]. Rock and Soil Mechanics, 2019, 40(S1): 415-423.
[14] LU Chen-kai, KONG Gang-qiang, SUN Guang-chao, CHEN Bin, YIN Gao-xiang, . Field tests on thermal-mechanical coupling characteristics of energy pile in pile-raft foundation [J]. Rock and Soil Mechanics, 2019, 40(9): 3569-3575.
[15] SHEN Hong, LI Xiao, LEI Mei-qing, XU Wen-bo, YU Xiu-ling, . Conception and model test of shear bond supporting system [J]. Rock and Soil Mechanics, 2019, 40(7): 2574-2580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!