Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (3): 869-876.doi: 10.16285/j.rsm.2019.0575

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Development and test of aerated inflation controlled anchors

YANG Xue-xiang1, JIAO Yuan-fa1, YANG Yu-yi2   

  1. 1.School of City Construction, Yangtze University, Jingzhou, 434000; 2. School of Architecture and Urban Planning, Beijing University of Civil Engineering and Architecture, Beijing 100044
  • Received:2019-03-26 Revised:2019-08-01 Online:2020-03-11 Published:2020-05-25
  • Supported by:
    This work was supported by the Development of Expansion Controlled Friction Anchor and Study on its Anchorage Principle(51678066).

Abstract: The existing aerated anchor has some shortcomings, such as small bearing capacity, explosive air bag, and unapplication in engineering. By adding end baffle and side guard plate for air bag of aerated anchor, the aerated anchor with end baffle and the aerated anchor with side guard plate was invented respectively. The aerated inflation controlled anchor was then developed by adding the earth-squeezing steel plate in the structure of the anchor, which changes the way of transmission of the anchor. It has the advantages of large bearing capacity, stable performance and complete recovery, and the overall structure of this anchor is simpler and more practical. Full-scale indoor and outdoor tests of the three kinds of anchors were carried out respectively. The maximum aeration pressure of the aerated inflation controlled anchor in tube piece type can reach 0.6 MPa, which is 5 times the existing aerated anchor. The maximum ultimate bearing capacity of the anchor section per meter is 40 kN, which is 60 times the existing aerated anchor. At the same time, the formulas for calculating the bearing capacity of the aerated inflation controlled anchor in tube piece type are deduced and verified, and facilitates the practical application of the anchor.

Key words: geotechnical anchorage, foundation pit support, aerated anchor, expansion control, ultimate bearing capacity

CLC Number: 

  • TU470
[1] YAN Qing, ZHAO Jun-hai, ZHANG Chang-guang. A new solution to the ultimate bearing capacity of reinforced foundation near slope based on the unified strength theory [J]. Rock and Soil Mechanics, 2021, 42(6): 1587-1600.
[2] YANG Jian, JIAN Wen-bin, HUANG Wei, HUANG Cong-hui, LUO Jin-mei, LI Xian-zhong, . Pull-out test and ultimate bearing capacity calculation of grouting branch-type anchor [J]. Rock and Soil Mechanics, 2021, 42(4): 1126-1132.
[3] LI Chao, LI Tao, JING Guo-ye, XIAO Yu-hua, . Study on the ultimate bearing capacity of surrounding soil underlying gripper of shaft boring machine [J]. Rock and Soil Mechanics, 2020, 41(S1): 227-236.
[4] HU Wei, MENG Jian-wei, YAO Chen, LEI Yong, . A method for calculating vertical pullout ultimate bearing capacity of shallow circular anchor plate [J]. Rock and Soil Mechanics, 2020, 41(9): 3049-3055.
[5] ZHAO Ming-hua, PENG Wen-zhe, YANG Chao-wei, XIAO Yao, LIU Ya-nan. Upper bound analysis of lateral bearing capacity of rigid piles in sloping ground [J]. Rock and Soil Mechanics, 2020, 41(3): 727-735.
[6] LEI Yong, DENG Jia-zheng, LIU Ze-yu, LI Jun-jie, ZOU Gen. A method to calculate ultimate bearing capacity of rock foundation with cavities considering load position offset [J]. Rock and Soil Mechanics, 2020, 41(10): 3326-3331.
[7] WANG Dong-ying, TANG Hua, YIN Xiao-tao, YANG Guang-hua, JIANG Yan, . Estimation method of ultimate bearing capacity of tunnel-type anchorage based on simplified mechanical model [J]. Rock and Soil Mechanics, 2020, 41(10): 3405-3414.
[8] JIANG Wan-li, ZHU Guo-fu, ZHANG Jie, . A direct high-strain method for the bearing capacity of single piles [J]. Rock and Soil Mechanics, 2020, 41(10): 3500-3508.
[9] GUO Yuan-cheng, LI Ming-yu, ZHANG Yan-wei, . Incremental analytical method for prestressed anchor and soil nail wall composite support system [J]. Rock and Soil Mechanics, 2019, 40(S1): 253-258.
[10] MU Rui, PU Shao-yun, HUANG Zhi-hong, LI Yong-hui, ZHENG Pei-xin, LIU Yang, LIU Ze, ZHENG Hong-chao, . Determination of ultimate bearing capacity of uplift piles in combined soil and rock masses [J]. Rock and Soil Mechanics, 2019, 40(7): 2825-2837.
[11] WANG Dong-yong, CHEN Xi, YU Yu-zhen, LÜ Yan-nan, . Ultimate bearing capacity analysis of shallow strip footing based on second- order cone programming optimized incremental loading finite element method [J]. Rock and Soil Mechanics, 2019, 40(12): 4890-4896.
[12] ZONG Zhong-ling, LU Xian-long, LI Qin-song,. Comparison test of compression and uplift on pressure-static and grouting micropiles [J]. , 2018, 39(S1): 362-368.
[13] OU Xiao-duo, QUAN Shou-yue, PENG Yuan-sheng, JIANG Jie, Lü Bo, JIANG Hua,. Design and test of a new type prefabricated supporting structure for foundation pit [J]. , 2018, 39(9): 3433-3439.
[14] YIN Jun-fan, LEI Yong, CHEN Qiu-nan, LIU Yi-xin, DENG Jia-zheng,. Upper bound analysis of the punching shear failure of cave roof in karst area [J]. , 2018, 39(8): 2837-2843.
[15] CAO Wen-gui, TAN Jian-hui, HU Wei-dong, . Upper bound of ultimate bearing capacity for the reinforced grounds [J]. , 2018, 39(6): 1955-1962.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAN Xian-jun, CHEN Wei-zhong, YANG Jian-ping, YANG Chun-he. Study of THM-damage coupling model of gas storage in salt rock with interlayer[J]. , 2009, 30(12): 3633 -3641 .
[2] WEI Xing,WANG Gang,YU Zhi-ling. FEM of traffic-load-induced settlement of road on soft clay[J]. , 2010, 31(6): 2011 -2015 .
[3] MAO Ning,ZHANG Yao-liang. Typical examples of simple methods to find empirical formulas[J]. , 2010, 31(9): 2978 -2982 .
[4] LIU Jie,LI Jian-lin,QU Jian-jun,Cheng Xing,LI Jian-wu,LUO Shi-wei. Multiple factors analysis of influence of developing horizontal displacement at Dagangshan dam abutment slope based on unloading rock mass mechanics[J]. , 2010, 31(11): 3619 -3626 .
[5] HAN Xian-min. Study of construction technology and mechanical effect of Guanjiao tunnel in shallow-buried sandy stratum in Xining-Golmud 2nd line[J]. , 2010, 31(S2): 297 -302 .
[6] JIANG Zheng-wei, PENG Jian-bing, WANG Qi-yao. Adverse geological problems and countermeasure of Xi’an Metro Line 3[J]. , 2010, 31(S2): 317 -321 .
[7] LIU Yong-hai, ZHU Xiang-rong, CHANG Lin-yue. Determining preconsolidation pressure by mathematic analysis based on casagrande method[J]. , 2009, 30(1): 211 -214 .
[8] ZHU Lei, HONG Bao-ning. Physico-mechanical characteristics of powdered soil of coal measure strata[J]. , 2009, 30(5): 1317 -1322 .
[9] SUN Chang-shuai, YANG Hai-wei, XU Guang-li. Researches on pull-out capacity calculating method of rock bolt foundation[J]. , 2009, 30(S1): 75 -78 .
[10] YANG Ying-xiao, GONG Xiao-nan, FAN Chuan, JIN Xing-ping, CHEN Hua. Triaxial testing study of dilatant characteristics of Qiantangjiang alluvial unsaturated silts[J]. , 2011, 32(S1): 38 -42 .