Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (10): 3326-3331.doi: 10.16285/j.rsm.2019.1944

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

A method to calculate ultimate bearing capacity of rock foundation with cavities considering load position offset

LEI Yong, DENG Jia-zheng, LIU Ze-yu, LI Jun-jie, ZOU Gen   

  1. Hunan Province Key Laboratory of Geotechnical Engineering Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
  • Received:2019-11-17 Revised:2020-05-09 Online:2020-10-12 Published:2020-11-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51878270).

Abstract: The offset of load position greatly influences the ultimate bearing capacity of the underlying rock foundation with cavities. Based on double logarithmic spiral curve model, the limit analysis method is adopted to establish the underlying rock foundation with cavities damage body function equation when the load position offset is small. Then, the calculation formula of ultimate bearing capacity of hollow rock foundation is deduced. When the offset of load position is large, Prandtl failure mode is developed in the rock foundation with cavities. Furthermore, the influence of the thickness h of rock foundation, load position offset e and internal friction angle ? on the ultimate bearing capacity of rock foundation with cavities are analyzed. Finally, the model test of the ultimate bearing capacity of the rock foundation with cavities under different load position offset and thickness were carried out, and the results were compared and verified with the theory. The results show that when the offset of position is constant, the ultimate bearing capacity of rock foundation increases linearly and the foundation tends to be complete rock foundation with the increase of h. The ultimate bearing capacity of rock foundation with cavities increases non-linearly with the increase of e when h is a certain value. When the h reaches a certain value, the ultimate bearing capacity is close to the value of complete bedrock. When h and e are constant, the limit bearing capacity of the rock foundation with void increases gradually with the increase of the angle of internal friction ?.

Key words: rock foundation with cavities, limit analysis, ultimate bearing capacity, double logarithmic spiral curve, experimental study

CLC Number: 

  • TU 45
[1] ZHOU Cui-ying, LIANG Yan-hao, LIU Chun-hui, LIU Zhen, . Experimental investigation on mechanism of mud film formation of natural red layer weathered soil [J]. Rock and Soil Mechanics, 2020, 41(S1): 132-138.
[2] LI Chao, LI Tao, JING Guo-ye, XIAO Yu-hua, . Study on the ultimate bearing capacity of surrounding soil underlying gripper of shaft boring machine [J]. Rock and Soil Mechanics, 2020, 41(S1): 227-236.
[3] HU Wei, MENG Jian-wei, YAO Chen, LEI Yong, . A method for calculating vertical pullout ultimate bearing capacity of shallow circular anchor plate [J]. Rock and Soil Mechanics, 2020, 41(9): 3049-3055.
[4] LI Jian-fei, SU Yang, SUN Zhi-bin, ZHAO Chen, . 3D seismic displacement analysis method of stepped slopes reinforced with piles based on Newmark principle [J]. Rock and Soil Mechanics, 2020, 41(8): 2785-2795.
[5] LIU Ke-qi, DING Wan-tao, CHEN Rui, HOU Ming-lei. Construction of three-dimensional failure model of shield tunnel face and calculation of the limit supporting force [J]. Rock and Soil Mechanics, 2020, 41(7): 2293-2303.
[6] ZHANG Qing-yan, CHEN Wei-zhong, YUAN Jing-qiang, LIU-Qi, RONG Chi, . Experimental study on evolution characteristics of water and mud inrush in fault fractured zone [J]. Rock and Soil Mechanics, 2020, 41(6): 1911-1922.
[7] ZHAO Ming-hua, PENG Wen-zhe, YANG Chao-wei, XIAO Yao, LIU Ya-nan. Upper bound analysis of lateral bearing capacity of rigid piles in sloping ground [J]. Rock and Soil Mechanics, 2020, 41(3): 727-735.
[8] YANG Xue-xiang, JIAO Yuan-fa, YANG Yu-yi, . Development and test of aerated inflation controlled anchors [J]. Rock and Soil Mechanics, 2020, 41(3): 869-876.
[9] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong, SHEN Fa-yi. Experimental and model research on shear creep of granite under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 509-519.
[10] ZHOU Qi-jian, MA De-cui, DENG Rong-gui, KANG Jing-wen, ZHU Quan-bing, . Experimental study on mechanical properties of red-layer soft rock in geothermal systems [J]. Rock and Soil Mechanics, 2020, 41(10): 3333-3342.
[11] WANG Dong-ying, TANG Hua, YIN Xiao-tao, YANG Guang-hua, JIANG Yan, . Estimation method of ultimate bearing capacity of tunnel-type anchorage based on simplified mechanical model [J]. Rock and Soil Mechanics, 2020, 41(10): 3405-3414.
[12] JIANG Wan-li, ZHU Guo-fu, ZHANG Jie, . A direct high-strain method for the bearing capacity of single piles [J]. Rock and Soil Mechanics, 2020, 41(10): 3500-3508.
[13] WANG Pei-tao, HUANG Zheng-jun, REN Fen-hua, ZHANG Liang, CAI Mei-feng, . Research on direct shear behaviour and fracture patterns of 3D-printed complex jointed rock models [J]. Rock and Soil Mechanics, 2020, 41(1): 46-56.
[14] ZHAO Xiao-yan, WAN Yu-hao, ZHANG Xiao-bing. Experimental study of fragment orientation of phyllite talus at Whenchuan-Maerkang expressway [J]. Rock and Soil Mechanics, 2020, 41(1): 175-184.
[15] SUN Lai-bin, XIAO Shi-guo, . Evaluation method for elastic foundation coefficient of finite downslope soil against loading segment of stabilizing piles [J]. Rock and Soil Mechanics, 2020, 41(1): 278-284.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] WANG Shu-yun, LU Xiao-bing, ZHAO Jing, WANG Ai-lan. Post-cyclic loading undrained strength degradation characteristics of silty clay[J]. , 2009, 30(10): 2991 -2995 .
[4] RONG Guan, WANG Si-jing, WANG En-zhi, LIU Sun-gui. Study of evolutional simulation of Baihetan river valley and evaluation of engineering quality of jointed basalt P2β3[J]. , 2009, 30(10): 3013 -3019 .
[5] KANG Hou-rong, LEI Ming-tang, ZHANG Xie-dong, ZHAO Jie-hua. Karst environment zoning for highway engineering of Guizhou Province[J]. , 2009, 30(10): 3032 -3036 .
[6] LU Zheng,YAO Hai-lin,LUO Xing-wen,HU Meng-ling. 3D vibration of pavement and double-layered subgrade coupled system subjected to a rectangular moving load[J]. , 2009, 30(11): 3493 -3499 .
[7] . Improvement of Whitcombe’s extended elastic impedance formula[J]. , 2009, 30(12): 3710 -3714 .
[8] LU Zu-de, CHEN Cong-xin, CHEN Jian-sheng, TONG Zhi-yi, ZUO Bao-cheng. Field shearing test for heavily weathered hornstone of Three Phase Project of Ling'ao Nuclear Power Station[J]. , 2009, 30(12): 3783 -3787 .
[9] PENG Peng, SONG Han-zhou, GUO Zhang-jun. Study of macroscopic regime of groundwater under dam section based on data fusion theory[J]. , 2009, 30(12): 3820 -3824 .
[10] WU Jian,XIE Xin-yu,ZHU Xiang-rong. Study of properties of 1-D complex nonlinear consolidation of saturated soils[J]. , 2010, 31(1): 81 -86 .