Rock and Soil Mechanics ›› 2019, Vol. 40 ›› Issue (12): 4890-4896.doi: 10.16285/j.rsm.2018.1764

• Geotechnical Engineering • Previous Articles     Next Articles

Ultimate bearing capacity analysis of shallow strip footing based on second- order cone programming optimized incremental loading finite element method

WANG Dong-yong1, CHEN Xi1, YU Yu-zhen2, LÜ Yan-nan1   

  1. 1. Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China; 2. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
  • Received:2018-09-19 Online:2019-12-11 Published:2020-01-04
  • Supported by:
    This work was supported by the Fundamental Research Funds for the Central Universities (2017YJS133) and the National Key R&D Program of China (2017YFC0804602).

Abstract: Ultimate bearing capacity analysis of the strip footing is a classical topic in soil mechanics. Based on the Hellinger-Reissner mixed variational principle and finite element method, a geotechnical elasto-plastic problem involving the Mohr-Coulomb model can be casted into a second-order cone programming (SOCP) problem in the finite element framework. A second-order cone programming based incremental finite element method named FEM-SOCP is then proposed. The proposed approach can avoid the complex stress integration algorithms and the smoothing treatment of the yield surface edges and corners, which are often necessary in the traditional elasto-plastic calculations. For the casted SOCP problem, the commercial solver MOSEK with the primal-dual interior point method can be used. The FEM-SOCP method is applied to the ultimate bearing capacity analysis of a shallow strip footing, with the associated and non-associated Mohr-Coulomb yield criteria considered, respectively. The numerical results show that the bearing capacity coefficients and bearing capacity obtained by the incremental loading FEM-SOCP method is consistent with the traditional FEM solution, but the yield zone attained is generally smoother compared to that obtained from conventional FEM.

Key words: shallow strip footing, ultimate bearing capacity, finite element method, second-order cone programming, non-associated plasticity, incremental loading method

CLC Number: 

  • TU 470
[1] LI Chao, LI Tao, JING Guo-ye, XIAO Yu-hua, . Study on the ultimate bearing capacity of surrounding soil underlying gripper of shaft boring machine [J]. Rock and Soil Mechanics, 2020, 41(S1): 227-236.
[2] WANG Xiang-nan, HAO Qing-shuo, YU Jia-lin, YU Yu-zhen, LÜ He, . Three-dimensional simulation of the separation of dam panel based on extended finite element method [J]. Rock and Soil Mechanics, 2020, 41(S1): 329-336.
[3] LI Jia-long, LI Gang, YU Long. Inelasticity-separated plane-strain element model and its application to Drucker-Prager model [J]. Rock and Soil Mechanics, 2020, 41(5): 1492-1501.
[4] XUE Yang, WU Yi-ping, MIAO Fa-sheng, LI Lin-wei, LIAO Kang, ZHANG Long-fei. Seepage and deformation analysis of Baishuihe landslide considering spatial variability of saturated hydraulic conductivity under reservoir water level fluctuation [J]. Rock and Soil Mechanics, 2020, 41(5): 1709-1720.
[5] ZHAO Ming-hua, PENG Wen-zhe, YANG Chao-wei, XIAO Yao, LIU Ya-nan. Upper bound analysis of lateral bearing capacity of rigid piles in sloping ground [J]. Rock and Soil Mechanics, 2020, 41(3): 727-735.
[6] YANG Xue-xiang, JIAO Yuan-fa, YANG Yu-yi, . Development and test of aerated inflation controlled anchors [J]. Rock and Soil Mechanics, 2020, 41(3): 869-876.
[7] JIANG Nan, HUANG Lin, FENG Jun, ZHANG Sheng-liang, WANG Duo, . Research on design and calculation method of tunnel-type anchorage of railway suspension bridge [J]. Rock and Soil Mechanics, 2020, 41(3): 999-1009.
[8] SUN Rui, YANG Feng, YANG Jun-sheng, ZHAO Yi-ding, ZHENG Xiang-cou, LUO Jing-jing, YAO Jie, . Investigation of upper bound adaptive finite element method based on second-order cone programming and higher-order element [J]. Rock and Soil Mechanics, 2020, 41(2): 687-694.
[9] ZHANG Hai-ting, YANG Lin-qing, GUO Fang, . Solution and analysis of dynamic response for rigid buried pipe in multi-layered soil based on SBFEM [J]. Rock and Soil Mechanics, 2019, 40(7): 2713-2722.
[10] MU Rui, PU Shao-yun, HUANG Zhi-hong, LI Yong-hui, ZHENG Pei-xin, LIU Yang, LIU Ze, ZHENG Hong-chao, . Determination of ultimate bearing capacity of uplift piles in combined soil and rock masses [J]. Rock and Soil Mechanics, 2019, 40(7): 2825-2837.
[11] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
[12] QIU Min, YUAN Qing, LI Chang-jun, XIAO Chao-chao, . Comparative study of calculation methods for undrained shear strength of clay based on cavity expansion theory [J]. Rock and Soil Mechanics, 2019, 40(3): 1059-1066.
[13] ZHENG An-xing, LUO Xian-qi, CHEN Zhen-hua, . Hydraulic fracturing coupling model of rock mass based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(2): 799-808.
[14] LIU Feng-tao, ZHANG Shao-fa, DAI Bei-bing, ZHANG Cheng-bo, LIN Kai-rong, . Upper bound limit analysis of soil slopes based on rigid finite element method and second-order cone programming [J]. Rock and Soil Mechanics, 2019, 40(10): 4084-4091.
[15] ZONG Zhong-ling, LU Xian-long, LI Qin-song,. Comparison test of compression and uplift on pressure-static and grouting micropiles [J]. , 2018, 39(S1): 362-368.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!