Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (4): 1126-1132.doi: 10.16285/j.rsm.2020.1362

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Pull-out test and ultimate bearing capacity calculation of grouting branch-type anchor

YANG Jian1, JIAN Wen-bin1, 2, HUANG Wei1, HUANG Cong-hui1, LUO Jin-mei3, LI Xian-zhong3   

  1. 1. Institute of Geotechnical and Geological Engineering, College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350116, China; 2. Key Laboratory of Geohazard Prevention of Fujian Province, Fuzhou University, Fuzhou, Fujian 350003, China; 3. Fujian Geological Exploration Institute of Geology and Mine Bureau, Fuzhou, Fujian 350013, China
  • Received:2020-09-09 Revised:2020-11-08 Online:2021-04-12 Published:2021-04-26
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41861134011) and the Science and Technology Innovation Team Fund Project of China Chemical Geology and Mine Bureau (201806291).

Abstract: Branch-type anchor is a new type of bolt independently developed by the authors, which has broad application prospects. In order to explore the load-bearing characteristics of branch-type anchors, an indoor test model was constructed, and a series of pull-out tests was carried out for different embedding depths, branch diameters, and double-branch spacing. The corresponding load-displacement curves were obtained, and non-dimensional processing for part of the data was conducted to obtain the relationship curve between the buried depth ratio and the load factor. Finally, a simplified mechanical model was used to derive the calculation formula for the end resistance and the pull-out ultimate bearing capacity of the branch-type anchor. The research results show that there is a nonlinear relationship between the embedment depth and the ultimate bearing capacity, and a critical embedment depth exists. The plate diameter has the most significant impact on the pull-out bearing capacity, which has a linear growth relationship with the ultimate bearing capacity. The ultimate bearing capacity is 2?5 times higher than that of a straight bolt. The bearing capacity of the double plate can be fully used when the separation distance of the double plate is 4 times of the plate diameter. Since the soil is mainly sheared at the initial stage of loading, the initial slope of the load-displacement curve of the double-branch anchor is much larger than that of the single-branch anchor. The sudden change point of the slope of the relationship between the embedment depth ratio and the load factor is the critical embedment ratio, which is 3.02. The results obtained by this formula are basically consistent with those of the four testing groups, which verifies the validity of the calculation formula. The research results have important theoretical and practical significance for the design and engineering application of the branch-type anchor.

Key words: branch-type anchor, ultimate bearing capacity, pull-out tests, end resistance, clay

CLC Number: 

  • U 418.5
[1] WANG Bin, HAN You-ming, ZHOU Xin, CHEN Cheng, ZHANG Xian-wei, GUI Lei, . In-situ test of shear modulus decay characteristics of lacustrine clay layer in Taihu Lake [J]. Rock and Soil Mechanics, 2021, 42(7): 2031-2040.
[2] LU Yang, LIU Si-hong, ZHANG Yong-gan, YANG Meng. Experimental study and mechanism analysis of permeability performance of clayey soil-rock mixtures [J]. Rock and Soil Mechanics, 2021, 42(6): 1540-1548.
[3] SHU Rong-jun, KONG Ling-wei, SHI Wen-zhuo, LIU Bing-heng, LI Cheng-sheng, . Effects of loading rate on SBPT responses of Zhanjiang structured clay [J]. Rock and Soil Mechanics, 2021, 42(6): 1557-1567.
[4] YAN Qing, ZHAO Jun-hai, ZHANG Chang-guang. A new solution to the ultimate bearing capacity of reinforced foundation near slope based on the unified strength theory [J]. Rock and Soil Mechanics, 2021, 42(6): 1587-1600.
[5] CHEN Chang-fu, DU Cheng, ZHU Shi-min, HE Shi-lin, ZHANG Gen-bao, . Experimental study and model of interface shear stress relaxation behavior of anchors in red clay [J]. Rock and Soil Mechanics, 2021, 42(5): 1201-1209.
[6] SUN Zeng-chun, GUO Hao-tian, LIU Han-long, WU Huan-ran, XIAO Yang, . A thermo-elasto-plastic constitutive model for saturated clay based on disturbed state concept [J]. Rock and Soil Mechanics, 2021, 42(5): 1325-1334.
[7] SHI Zhen-hao, HUANG Mao-song, NI Yu-ping, . Intergranular-strain based constitutive model for saturated clay with anisotropic small-strain stiffness [J]. Rock and Soil Mechanics, 2021, 42(4): 1036-1044.
[8] ZHANG Le, DANG Fa-ning, GAO Jun, DING Jiu-long. Experimental study on the one-dimensional nonlinear consolidation and seepage of saturated clay considering stress history under ramp loading [J]. Rock and Soil Mechanics, 2021, 42(4): 1078-1087.
[9] LEI Hua-yang, XU Ying-gang, MIAO Jiang-yan, LIU Xu. Experimental investigation on dynamic properties of soft clay under coupled cyclic-seepage loads [J]. Rock and Soil Mechanics, 2021, 42(3): 601-610.
[10] LIU Jie, YANG Yu-hua, YAO Hai-lin, LU Zheng, YUE Chan, . Experimental study on treatment of dispersive clay based on different modification methods [J]. Rock and Soil Mechanics, 2020, 41(S1): 163-170.
[11] LI Chao, LI Tao, JING Guo-ye, XIAO Yu-hua, . Study on the ultimate bearing capacity of surrounding soil underlying gripper of shaft boring machine [J]. Rock and Soil Mechanics, 2020, 41(S1): 227-236.
[12] HU Wei, MENG Jian-wei, YAO Chen, LEI Yong, . A method for calculating vertical pullout ultimate bearing capacity of shallow circular anchor plate [J]. Rock and Soil Mechanics, 2020, 41(9): 3049-3055.
[13] FANG Ying-guang, CHEN Jian, GU Ren-guo, BA Ling-zhen, SHU Hao-kai, . Applicability of clay permeability based on modified Kozeny-Carman equation by effective specific surface area [J]. Rock and Soil Mechanics, 2020, 41(8): 2547-2554.
[14] ZHU Nan, LIU Chun-yuan, ZHAO Xian-hui, WANG Wen-jing, . Micro-structure characteristics of structured clay under different stress paths in K0 consolidated drained tests [J]. Rock and Soil Mechanics, 2020, 41(6): 1899-1910.
[15] YU Lu, YANG Qing, YANG Gang, ZHANG Jin-li. Analysis of the resistance of elliptical tip of torpedo anchor by plastic limit analysis [J]. Rock and Soil Mechanics, 2020, 41(6): 1953-1962.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Shu-lin,LI Fang,CHEN Jun. Electrical resistivity measurement for lime-stabilized silt soil[J]. , 2010, 31(1): 51 -55 .
[2] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[3] LI Jing,MIAO Lin-chang,ZHONG Jian-chi,FENG Zhao-xiang. Deformation and damping characteristics of EPS beads-mixed lightweight soil under repeated load-unloading[J]. , 2010, 31(6): 1769 -1775 .
[4] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[5] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[6] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[7] CHEN Li-wen, SUN De-an. Bifurcation analysis of overconsolidated clays with soil-water coupling along different stress paths[J]. , 2011, 32(10): 2922 -2928 .
[8] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .
[9] ZHAO Ming-hua, LEI Yong, ZHANG Rui. Study of punching failure mode and safe thickness of pile foundation in karst region[J]. , 2012, 33(2): 524 -530 .
[10] WANG Song-he,QI Ji-lin. Experimental study of relaxation characteristics of warm permafrost[J]. , 2012, 33(6): 1660 -1666 .