Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (3): 601-610.doi: 10.16285/j.rsm.2020.0906

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental investigation on dynamic properties of soft clay under coupled cyclic-seepage loads

LEI Hua-yang1, 2, 3, XU Ying-gang1, MIAO Jiang-yan1, LIU Xu1   

  1. 1. Department of Civil Engineering, Tianjin University, Tianjin 300350, China; 2. Key Laboratory of Coast Civil Structure Safety of Education Ministry, Tianjin University, Tianjin 300350, China; 3. Key Laboratory of Earthquake Engineering Simulation and Seismic Resilience, China Earthquake Administration, Tianjin 300350, China)
  • Received:2020-06-28 Revised:2020-12-24 Online:2021-03-11 Published:2021-03-15
  • Supported by:
    the National Key R&D Plan(2017YFC0805407), the Major Projects of the National Natural Science Foundation(51890911) and the Open Project Fund of State Key Laboratory of Disaster Reduction in Civil Engineering(SLDRCE17-01).

Abstract: In this paper, a series of triaxial tests under coupled cyclic-seepage loads was carried out for saturated soft clay in Tianjin. The results show that the development of cumulative plastic strain is characterized by three stages: initial instantaneous growth, decelerated increase and stable / linear development, and seepage can enlarge the dynamic deformation up to 1?2 times of that compared to cyclic load only. Larger seepage force induces greater cumulative plastic deformation. The lower frequency or greater cyclic stress amplitude induces larger strain. The prediction model of cumulative plastic deformation of soft clay is established under the condition of dynamic-seepage coupling. The presence of seepage induces greater inclination to strain axis of hysteric curve at initial vibration. The dynamic elastic modulus of soft clay increases firstly and then decreases, and the larger seepage force induces lower modulus; the mathematical relationship between dynamic elastic modulus and cumulative plastic strain is revealed: under seepage condition, a prediction model of dynamic modulus was proposed considering the influences of seepage force and frequency. The damp ratio decreases to a constant value with increasing number of cycles. The larger the seepage force is, the larger the damping ratio attenuation amplitude is, and the damping ratio is approximately 0.02?0.04 at the end of the vibration. The results could provide guidance on the numerical simulation of dynamic characteristics of soft clay ground under seepage condition.

Key words: soft clay, dynamic-seepage coupling, cumulative plastic strain, seepage, dynamic modulus, damping ratio

CLC Number: 

  • TU411
[1] XIA Cai-chu, XU Ying-jun, WANG Chen-lin, ZHAO Hai-ou, XUE Xiao-dai, . Calculation of air leakage rate in lined cavern for compressed air energy storage based on unsteady seepage process [J]. Rock and Soil Mechanics, 2021, 42(7): 1765-1773.
[2] LIU Fei-yu, JIANG Huai, WANG Jun, . Experimental study on cyclic shear softening characteristics of gravel-geogrid interface [J]. Rock and Soil Mechanics, 2021, 42(6): 1485-1492.
[3] WANG Liu-jiang, LIU Si-hong, ZHAO Zhi-jie, SHEN Chao-min, LU Yang . Experimental study on dynamic behaviour for soilbag interface using cyclic direct shearing test [J]. Rock and Soil Mechanics, 2021, 42(6): 1625-1634.
[4] PENG Shou-jian, WANG Rui-fang, XU Jiang, GAN Qing-qing, CAI Guo-liang, . Experimental study of the effect of secondary carbonization temperature on mechanical properties and microstructure of hot-pressed coal briquette specimens [J]. Rock and Soil Mechanics, 2021, 42(5): 1221-1229.
[5] REN Hua-ping, LIU Xi-zhong, XUAN Ming-min, YE Xing-yu, LI Qiang, ZHANG Sheng. Study of cumulative plastic deformation of compacted silt under cyclic loading [J]. Rock and Soil Mechanics, 2021, 42(4): 1045-1055.
[6] ZHANG Le, DANG Fa-ning, GAO Jun, DING Jiu-long. Experimental study on the one-dimensional nonlinear consolidation and seepage of saturated clay considering stress history under ramp loading [J]. Rock and Soil Mechanics, 2021, 42(4): 1078-1087.
[7] WANG Ke, SHENG Jin-chang, GAO Hui-cai, TIAN Xiao-dan, ZHAN Mei-li, LUO Yu-long, . Study on seepage characteristics of rough crack under coupling of stress-seepage erosion [J]. Rock and Soil Mechanics, 2020, 41(S1): 30-40.
[8] YANG Zhi-hao, YUE Zu-run, FENG Huai-ping, YE Chao-liang, MA De-liang, . Large scale triaxial tests on graded macadam filling and its accumulated plastic strain prediction model [J]. Rock and Soil Mechanics, 2020, 41(9): 2993-3002.
[9] WANG Ming-nian, JIANG Yong-tao, YU Li, DONG Yu-cang, DUAN Ru-yu, . Analytical solution of startup critical hydraulic gradient of fine particles migration in sandy soil [J]. Rock and Soil Mechanics, 2020, 41(8): 2515-2524.
[10] FANG Ying-guang, CHEN Jian, GU Ren-guo, BA Ling-zhen, SHU Hao-kai, . Applicability of clay permeability based on modified Kozeny-Carman equation by effective specific surface area [J]. Rock and Soil Mechanics, 2020, 41(8): 2547-2554.
[11] ZHANG Jin-xun, QI Yi, YANG Hao, SONG Yong-wei. Temperature field expansion of basin-shaped freezing technology in sandy pebble stratum of Beijing [J]. Rock and Soil Mechanics, 2020, 41(8): 2796-2804.
[12] LIU Zheng-hong, ZHANG Long, ZHENG Jian-guo, ZHANG Wei, YU Yong-tang, . Testing device and experimental study on anti-seepage ability of sliding micrometer tube [J]. Rock and Soil Mechanics, 2020, 41(7): 2504-2515.
[13] JIANG Chang-bao, WEI Cai, DUAN Min-ke, CHEN Yu-fei, YU Tang, LI Zheng-ke, . Hysteresis effect and damping characteristics of shale under saturated and natural state [J]. Rock and Soil Mechanics, 2020, 41(6): 1799-1808.
[14] ZHANG Qing-yan, CHEN Wei-zhong, YUAN Jing-qiang, LIU-Qi, RONG Chi, . Experimental study on evolution characteristics of water and mud inrush in fault fractured zone [J]. Rock and Soil Mechanics, 2020, 41(6): 1911-1922.
[15] HU Sheng-bin, DU Guo-ping, XU Guo-yuan, ZHOU Tian-zhong, ZHONG You-xin, SHI Chong-qing, . Sonar seepage vector method based on energy measurement and its application [J]. Rock and Soil Mechanics, 2020, 41(6): 2143-2154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Zhen-jun,WANG Shui-lin,TANG Hua,WANG Wei,GE Xiu-run. A new optimization approach for slope reliability analysis[J]. , 2010, 31(3): 713 -718 .
[2] WANG Cheng,XU Hao,ZHENG Ying-ren. Study of safety factor of tunnel close to pile foundation[J]. , 2010, 31(S2): 260 -264 .
[3] LI Xin-ping, DAI Yi-fei, LIU Jin-huan, ZENG Ming , LIU Li-sheng, ZHANGKai-g. Test study and numerical simulation analysis of explosion in steel tubes[J]. , 2009, 30(S1): 5 -9 .
[4] WANG Ying-ming, LI Xiao-lun. Introduction to treatment of collapsible loess subgrade for Shaanxi section of Zhengzhou-Xi’an passenger dedicated railway line[J]. , 2009, 30(S2): 283 -286 .
[5] ZHANG Ping, FANG Ying-guang, YAN Xiao-qing, HE Zhi-wei1. Study of different dry methods for drying remolded bentonite sample with mercury intrusion test[J]. , 2011, 32(S1): 388 -0391 .
[6] HSIAO Fu-yuan , WANG Chien-li , SHAO How-jei. Mechanical parameters estimation and tunnel deformation study for brittle rock under high overburden condition[J]. , 2011, 32(S2): 109 -114 .
[7] MO Zhen-ze ,LI Hai-bo ,ZHOU Qing-chun ,HE En-guang ,ZOU Fei ,ZHU Xiao-ming ,ZHAO Yu. Research on numerical simulation of rock breaking using TBM disc cutters based on UDEC method[J]. , 2012, 33(4): 1196 -1202 .
[8] WU Xian-zhen , LIU Xiang-xin , LIANG Zheng-zhao , YOU Xun , YU Min . Experimental study of fractal dimension of AE serials of different rocks under uniaxial compression[J]. , 2012, 33(12): 3561 -3569 .
[9] LIU Jian, SONG Juan, ZHANG Feng-wei, ZHANG Qiang-yong, DUAN Kang, LI Shu-cai. Safety analysis of casing of gas storage influenced by stochastic factors during operation period[J]. , 2012, 33(12): 3721 -3728 .
[10] LIU Zeng-li,LI Hong-sheng,XING Huai-nian,ZHANG Xiao-peng. Correction-factor test method for nonlinear fracture toughness of frozen soil[J]. , 2013, 34(3): 908 -912 .