Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (8): 2547-2554.doi: 10.16285/j.rsm.2019.2157

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Applicability of clay permeability based on modified Kozeny-Carman equation by effective specific surface area

FANG Ying-guang1, 2, CHEN Jian1, 2, GU Ren-guo1, 2, BA Ling-zhen1, 2, SHU Hao-kai1   

  1. 1.School of Civil Engineering &Transportation, South China University of Technology, Guangzhou, Guangdong 510641 China, 2. State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, Guangdong 510641, China
  • Received:2019-12-24 Revised:2020-05-24 Online:2020-08-14 Published:2020-10-17

Abstract: Clay contains a variety of clay minerals. The charged surface of clay particles makes the clay particles show active hydraulic properties, which can lead to the formation of a double layer on the surface of the soil. So clay particles are stacked on each other under various forces during the deposition process to form non-connected pore structures such as isolated pores and blind pores. As a result, when seepage occurs in the soil, the fluid only flows through the interconnected pores, but not through the unconnected pores. Unfortunately, the Kozeny-Carman equation (K-C equation) uses the total specific surface area of the particles as seepage specific surface, therefore, the K-C equation is not suitable for calculating the hydraulic conductivity of clay any more. In this paper, only the pore specific surface area of the interconnected pores in which the fluid can flow through is taken as the seepage effective specific surface area. And then, the seepage effective specific surface area is used to modify the original K-C equation. Test results show that the modified K-C equation has obvious advantages over the original K-C equation in describing the seepage law of clay.

Key words: K-C equation, clay seepage, specific surface area, mercury intrusion test, pore structure

CLC Number: 

  • TU 442
[1] ZHANG Ji-wen, MU Qing-yi, LIAO Hong-jian, LIU Fen-liang, . A soil freezing characteristic curve model for capturing void ratio and specific surface area effects [J]. Rock and Soil Mechanics, 2020, 41(9): 2913-2921.
[2] LI Kun-peng, ZHAO Xiao-yan, XIAO Dian, LI Jin. Mechanism of silty mudstone slaking aggravated by acid rain-induced chemical damage [J]. Rock and Soil Mechanics, 2020, 41(8): 2693-2702.
[3] PENG Jia-yi, ZHANG Jia-fa, SHEN Zhen-zhong, YE Jia-bing, . Effect of grain shape on pore characteristics and permeability of coarse-grained soil [J]. Rock and Soil Mechanics, 2020, 41(2): 592-600.
[4] CAI Guo-qing, WU Tian-chi, WANG Ya-nan, LIU Yi, LI Jian, ZHAO Cheng-gang, . Model of the microstructure evolution of unsaturated compacted soils with double-pore structure [J]. Rock and Soil Mechanics, 2020, 41(11): 3583-3590.
[5] LI Ling, LIU Jin-quan, LIU Zao-bao, LIU Tao-gen, WANG Wei, SHAO Jian-fu, . Experimental investigations on compaction properties of sand-clay mixture at high pressure [J]. Rock and Soil Mechanics, 2019, 40(9): 3502-3514.
[6] LI Jie-lin, ZHU Long-yin, ZHOU Ke-ping, LIU Han-wen, CAO Shan-peng, . Damage characteristics of sandstone pore structure under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(9): 3524-3532.
[7] LIU Yu, ZHANG Wei, LIANG Xiao-long, XU Lin, TANG Xin-yu. Determination on representative element volume of Nanjing silty-fine sand for its spatial pore structure [J]. Rock and Soil Mechanics, 2019, 40(7): 2723-2729.
[8] WANG Shi-quan, WEI Ming-li, HE Xing-xing, ZHANG Ting-ting, XUE Qiang, . Study of water transfer mechanism during sediment solidification process based on nuclear magnetic resonance technology [J]. Rock and Soil Mechanics, 2019, 40(5): 1778-1786.
[9] JIN Xiao, YANG Wen, MENG Xian-Hong, LEI Le-Le, . Deduction and application of unfrozen water content in soil based on electrical double-layer theory [J]. Rock and Soil Mechanics, 2019, 40(4): 1449-1456.
[10] LI Jing, KONG Xiang-chao, SONG Ming-shui, WANG Yong, WANG Hao, LIU Xu-liang, . Study on the influence of reservoir rock micro-pore structure on rock mechanical properties and crack propagation [J]. Rock and Soil Mechanics, 2019, 40(11): 4149-4156.
[11] YE Jia-bing, ZHANG Jia-fa, ZOU Wei-lie, . Influences of grain shape on pore characteristics of filled breakstone aggregate [J]. Rock and Soil Mechanics, 2018, 39(12): 4457-4467.
[12] HUANG Wei, XIANG Wei, LIU Qing-bing, DAO Minh-huan, WANG Zhen-hua, ZHANG Yun-long,. Associated evolutionary mechanism of hydration-pore for montmorillonite modified by ionic soil stabilizer [J]. , 2018, 39(10): 3631-3640.
[13] WU Ya-jun, NIU Kun, TANG Hai-feng, HU Zhi-gang, LU Yi-tian,. Enhanced permeability of calcium lime in construction waste slurry improvement by vacuum preloading with flocculation [J]. , 2017, 38(12): 3453-3461.
[14] SUN Wei, WU Ai-xiang , HOU Ke-peng, YANG Yi, LIU Lei,. Application of X-Ray CT technology in the pore structure study of subsidence area backfilling body [J]. , 2017, 38(12): 3635-3642.
[15] WANG Xin-zhi, WANG Xing, HU Ming-jian, ZHU Chang-qi, MENG Qing-shan, WANG Ren,. Study of permeability of calcareous silty layer of foundation at an artificial reclamation island [J]. , 2017, 38(11): 3127-3135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[2] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[3] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[4] YANG Kun, ZHOU Chuang-bing WANG Tong-xu. Risk analysis of dam slope under external random multi-loadings[J]. , 2009, 30(10): 3057 -3062 .
[5] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[6] ZHOU Xiao-jie, JIE Yu-xin, LI Guang-xin. Numerical simulation of piping based on coupling seepage and pipe flow[J]. , 2009, 30(10): 3154 -3158 .
[7] WU Chang-yu, ZHANG Wei, LI Si-shen, ZHU Guo-sheng. Research on mechanical clogging mechanism of releaf well and its control method[J]. , 2009, 30(10): 3181 -3187 .
[8] CUI Hao-dong, ZHU Yue-ming. Back analysis of seepage field of Ertan high arch dam foundation[J]. , 2009, 30(10): 3194 -3199 .
[9] JIA Yu-feng,CHI Shi-chun,LIN Gao. Constitutive model for coarse granular aggregates incorporating particle breakage[J]. , 2009, 30(11): 3261 -3266 .
[10] KONG Wei-xue,RUI Yong-qin,DONG Bao-di. Determination of dilatancy angle for geomaterials under non-associated flow rule[J]. , 2009, 30(11): 3278 -3282 .