Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (8): 2536-2546.doi: 10.16285/j.rsm.2019.2064

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on simulation method of mode I fracture toughness and its meso-influencing factors

WU Shun-chuan1, 2, SUN Wei1, LIU Yang1, CHENG Zi-qiao3, XU Xue-liang4   

  1. 1. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mine, University of Science and Technology Beijing, Beijing 100083, China; 2. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; 3. PowerChina Roadbridge Group Co., Ltd., Beijing 100044, China; 4. Railway Engineering Research Institute, China Academy of Railway Sciences, Beijing 100081, China
  • Received:2019-12-09 Revised:2020-05-20 Online:2020-08-14 Published:2020-10-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51774020, 51934003), the National Key Research and Development Program of China (2017YFC0805300) and the Science and Technology Project of Power China Road Bridge Group Co., Ltd. (LQKY2017-03).

Abstract: The discrete element numerical method has been usually used for some parameter sensitivity analysis of geo-materials in the compression test and the Brazilian splitting test. However, there have been limited studies systematically focusing on mesoscopic influencing factors and 3D fracture process in mode I fracture toughness tests. The 2D discrete element methods cannot reflect the real mechanical behavior of a 3D model. Therefore, a three-dimensional flat joint model (FJM3D) is used in this paper to investigate the effects of microstructure parameters and bond mesoscopic parameters on mode I fracture toughness tests with different notch shapes. The microstructure parameters include the square root of average particle radius ( ), model resolution ( ), and maximum/minimum particle diameter ( ). Bond meso-parameters include average coordination number (CN), slit element fraction ( ), bond tensile strength ( ), bond cohesion ( ), friction coefficient ( ) and friction angle ( ). Results of parameter sensitivity analysis show that the mode I fracture toughness ( ) is positively correlated with , CN, and , and negatively correlated with and . There are no obvious linear relationships between and , , , . In addition, suitable ranges of and are recommended to obtain an appropriate mode I fracture toughness with a low level of variation. Based on the results of parameter sensitivity analysis, the mechanical behaviors of the Kowloon granite with notched semi-circular bend (SCB) and cracked chevron notched semi-circular bend (CCNSCB) specimens are calibrated. The failure process of mode I fracture toughness tests with different notch shapes indicates that the pre-peak and post-peak behaviors of the SCB test is more consistent with the laboratory test.

Key words: mode I fracture toughness, flat-joint model, sensitivity analysis, SCB, CCNSCB

CLC Number: 

  • TU 455
[1] LI Zhi-hao, XIAO Shi-guo. Calculation method for seismic permanent displacement of cantilever retaining walls considering different movement modes [J]. Rock and Soil Mechanics, 2021, 42(3): 723-734.
[2] LI Jian-fei, SU Yang, SUN Zhi-bin, ZHAO Chen, . 3D seismic displacement analysis method of stepped slopes reinforced with piles based on Newmark principle [J]. Rock and Soil Mechanics, 2020, 41(8): 2785-2795.
[3] ZHANG Zhi-tao, WANG Hai-jun, TANG Lei, ZHAO Chu, LI Han-zhang, SU zheng-yang, . Study of fracture characteristics of semi-circular bending with internal crack based on 3D-ILC [J]. Rock and Soil Mechanics, 2020, 41(1): 111-122.
[4] ZHANG Sheng, WANG Long-fei, CHANG Xu, WANG Dong-kun, WANG Xiao-liang, QIAO Yang, . Experimental study of size effect of fracture toughness of limestone using the notched semi-circular bend samples [J]. Rock and Soil Mechanics, 2019, 40(5): 1740-1749.
[5] ZHAO Zi-jiang, LIU Da-an, CUI Zhen-dong, TANG Tie-wu, HAN Wei-ge,. Experimental study of determining fracture toughness KIC of shale by semi-disk three-point bending [J]. , 2018, 39(S1): 258-266.
[6] WANG Zhi-rong, HE Ping, GUO Zhi-wei, WANG Yong-chun. Calculation of initiation pressure of vertical well for coalbed methane considering crack characteristic index [J]. , 2018, 39(S1): 369-377.
[7] GUO Chong-yang, LI Dian-qing, CAO Zi-jun, GAO Guo-hui, TANG Xiao-song. Efficient reliability sensitivity analysis for slope stability in spatially variable soils [J]. , 2018, 39(6): 2203-2210.
[8] CHEN Wei-zhong, MA Yong-shang, YU Hong-dan, GONG Zhe, LI Xiang-ling,. Parameter sensitivity analysis for thermo-hydro-mechanical coupling model of clay tunnel for radioactive waste disposal [J]. , 2018, 39(2): 407-416.
[9] ZHANG Yong-jie, XIA Yi-qi, FENG Xia-ting, WANG Gui-yao,. A simplified method and affecting factors for double pile-column foundation in abrupt slope [J]. , 2017, 38(6): 1705-1715.
[10] ZOU Fei,LONG Wan-xue,LI Liang,. Theoretical analysis and numerical simulation of rock damage and failure under wedge cutting [J]. , 2016, 37(7): 2101-2108.
[11] CHEN Wen-wu, BI Jun, MA Ya-wei, LIU Wei, JIANG Yao, . Fitted and predicted equations of MK model for soil-water characteristic curve and their parametric analysis [J]. , 2016, 37(11): 3208-3214.
[12] DAI Feng, WEI Ming-dong, XU Nu-wen, XU Yuan, ZHAO Tao. Progressive fracture mechanism of CCNSCB rock fracture toughness specimens and calibration of wide-range dimensionless stress intensity factors [J]. , 2016, 37(11): 3215-3223.
[13] LEI Yong, LIU Ze. A calculation method for Rock-socketed depth of highway bridge pile based on Hoek-Brown strength criterion [J]. , 2015, 36(2): 457-462.
[14] SONG Wei-dong ,CAO Shuai ,FU Jian-xin ,JIANG Guo-jian ,WU Feng,. Sensitivity analysis of impact factors of pillar stability and its application [J]. , 2014, 35(S1): 271-277.
[15] SU Yong-hua,LUO Zheng-dong,LI Xiang. Gray correlation analysis method for cut-and-fill roadbed slope stability based on uniform experiment [J]. , 2012, 33(8): 2259-2264.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] HU Wei, HUANG Yi, LIU Zeng-rong. Testing and theoretical study of undrained shearing strength of saturated loess under cyclic loading[J]. , 2009, 30(10): 2996 -3000 .
[4] WU Shi-yu, YU Jin-huang. Additional length of seepage path of upstream slope of dams and levees on impervious strata[J]. , 2009, 30(10): 3151 -3153 .
[5] KONG Wei-xue,RUI Yong-qin,DONG Bao-di. Determination of dilatancy angle for geomaterials under non-associated flow rule[J]. , 2009, 30(11): 3278 -3282 .
[6] TAN Xiao-hui,WANG Jian-guo,FENG Min-jie,BI Wei-hua. Reliability analysis of soil nailed structures using spreadsheet method[J]. , 2009, 30(11): 3447 -3452 .
[7] LI Li-ping, LI Shu-cai, CUI Jin-sheng. Experimental research on chemical grout for treating water inrush in rock mass[J]. , 2009, 30(12): 3642 -3648 .
[8] ZHAO Ming-hua, ZHANG Ling, CAO Wen-gui, MA Bin-hui. Deformation analysis of geocell reinforcement based on theory for beam on elastic foundation[J]. , 2009, 30(12): 3695 -3699 .
[9] YI Xiao-ming, ZHANG Ding-li, PANG Tie-zheng, LUO Jian-jun. Practice and monitoring analysis of building lifting due to grouting[J]. , 2009, 30(12): 3776 -3782 .
[10] HE Fa-guo, CHEN Wen-wu, HAN Wen-feng, ZHANG Jing-ke. Correlation of microstructure indices and performance of sand solidified with polymer material SH[J]. , 2009, 30(12): 3803 -3807 .