Rock and Soil Mechanics ›› 2019, Vol. 40 ›› Issue (12): 4759-4766.doi: 10.16285/j.rsm.2019.0826

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Microstructure and compression characteristics of NaCl solutions saturated expansive soil

LIANG Wei-yun, WEI Chang-fu, YAN Rong-tao, YANG De-huan   

  1. Guangxi Key Laboratory of Geomechanics and Geotechnical Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
  • Received:2019-05-10 Online:2019-12-11 Published:2020-01-04
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41572293, 11562007, 11372078) and the Natural Science Foundation of Guangxi (2017GXNSFAA198215).

Abstract: Pore water chemistry will change the intergranular force and directly affect the microstructure, the physical mechanical properties are further affected for clays. To investigate the effect of pore solution on the compressive properties and microstructure of remolded nature clay, one-dimensional compression test and mercury intrusion porosimetry (MIP) were carried out on the Ningming expansive soil which saturated with the NaCl solutions. The results show that with the increase of osmotic suction, the particles change from uniform dispersion to flocculation structure and forming intra-aggregate pore and inter-aggregate pore. Thus, the salt content specimens exhibit a double pore-size distribution. The initial void ratio of pre-consolidated sample (20 kPa) decreased with the increase of osmotic suction, leading to the increase of consolidation yield stress. However, the osmotic suction had little effect on the compression and swelling index. The permeability decreased with the increase of vertical pressure. When the vertical pressure is lower than 200 kPa, the permeability increased first and then decreased with increasing osmotic suction, but as vertical pressure is greater than 200 kPa, the effect of osmotic suction on permeability was negligible. It is found that the permeability under low pressure is controlled by the coupling effect of microstructure and density. The increase of osmotic suction leads to the increase of macropore and permeability, while permeability is decreased with the increase of density.

Key words: expensive soil, NaCl solutions, microstructure, one-dimensional compression test

CLC Number: 

  • TU 411
[1] ZHAO Yi-qing, WU Chang-gui, JIN Ai-bing, SUN Hao, . Experimental study of sandstone microstructure and mechanical properties under high temperature [J]. Rock and Soil Mechanics, 2020, 41(7): 2233-2240.
[2] ZHU Nan, LIU Chun-yuan, ZHAO Xian-hui, WANG Wen-jing, . Micro-structure characteristics of structured clay under different stress paths in K0 consolidated drained tests [J]. Rock and Soil Mechanics, 2020, 41(6): 1899-1910.
[3] DU Yu-xiang, SHENG Qian, WANG Shuai, FU Xiao-dong, LUO Hong-xing, TIAN Ming, WANG Li-wei, MEI Hong-ru. Study of microstructure and mechanical properties of semi-diagenetic rock of Xigeda Formation [J]. Rock and Soil Mechanics, 2020, 41(4): 1247-1258.
[4] ZHANG Shan-kai, LENG Xian-lun, SHENG Qian, . Study of water swelling and softening characteristics of expansive rock [J]. Rock and Soil Mechanics, 2020, 41(2): 561-570.
[5] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[6] ZHAO Bo, ZHANG Guang-qing, TANG Mei-rong, ZHUANG Jian-man, LIN Can-kun, . Mechanism of the effect of long-term water injection on mechanical properties of tight sandstone [J]. Rock and Soil Mechanics, 2019, 40(9): 3344-3350.
[7] DENG Hua-feng, ZHI Yong-yan, DUAN Ling-ling, PAN Deng, LI Jian-lin. Mechanical properties of sandstone and damage evolution of microstructure under water-rock interaction [J]. Rock and Soil Mechanics, 2019, 40(9): 3447-3456.
[8] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, CHEN Li, . Quantitative microstructure information extraction and microscopic morphology analysis of anisotropic schist [J]. Rock and Soil Mechanics, 2019, 40(7): 2617-2627.
[9] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, WANG Yan-chao, . Effect of water and microstructure on wave velocity anisotropy of schist and its mechanism [J]. Rock and Soil Mechanics, 2019, 40(6): 2221-2230.
[10] JIANG Qiang-qiang, LIU Lu-lu, JIAO Yu-yong, WANG Hao, . Strength properties and microstructure characteristics of slip zone soil subjected to wetting-drying cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 1005-1012.
[11] WANG Deng-ke, SUN Liu-tao, WEI Jian-ping, . Microstructure evolution and fracturing mechanism of coal under thermal shock [J]. Rock and Soil Mechanics, 2019, 40(2): 529-538.
[12] LI Ming-yu, SUN Wen-jing. Water retention behaviour of biochar-amended clay and its influencing mechanism [J]. Rock and Soil Mechanics, 2019, 40(12): 4722-4730.
[13] FEI Suo-zhu, TAN Xiao-hui, SUN Zhi-hao, DU Lin-feng. Analysis of autocorrelation distance of soil based on microstructure simulation [J]. Rock and Soil Mechanics, 2019, 40(12): 4751-4758.
[14] WANG Dong-wei, LU Wu-ping, TANG Chao-sheng, ZHAO Hong-wei, LI Sheng-jie, LIN Luan, LENG Ting, . Sample preparation technique and microstructure quantification method for sandy soil [J]. Rock and Soil Mechanics, 2019, 40(12): 4783-4792.
[15] ZHANG Shan-kai, LENG Xian-lun, SHENG Qian, LI Biao, ZHOU Yong-qiang, . Swelling and shrinkage characteristics study of Lushi expansive rock under dry and wet circulation [J]. Rock and Soil Mechanics, 2019, 40(11): 4279-4288.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!