Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (1): 185-193.doi: 10.16285/j.rsm.2018.2192

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Preliminary study of real-time pore water pressure response and reinforcement mechanism of air-booster vacuum preloading treated dredged slurry

SHI Li1, HU Dong-dong1, CAI Yuan-qiang1, PAN Xiao-dong1, SUN Hong-lei2   

  1. 1. Department of Architecture Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; 2. Department of Architecture Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
  • Received:2018-12-03 Revised:2019-05-14 Online:2020-01-13 Published:2020-01-05
  • About author:SHI Li, male, (1987-), PhD, associate Professor, Research interest: geotechnical engineering.
  • Supported by:
    This work was supported by the National Key R&D Program of China (2016YFC0800200), the National Natural Science Foundation of China (51620105008, 51608482, 51879234) and the Key R&D Program of Zhejiang Province(2018C03038).

Abstract: Laboratory tests have been carried out for simulating dredged-slurry treatment combining air-booster and conventional vacuum preloading methods. Settlement plate, micro pore water pressure transducer and miniature vane shearing instrument are adopted for monitoring the settlement, the pore pressure dissipation and the soil strength during the test. The test results demonstrate that the air-booster vacuum-preloading method can significantly improve the soil strength, pore-water pressure dissipation and settlement. In particular, the real-time responses of pore-water pressure during the air-pressurizing process have been obtained that, in combination with the numerical simulations, help derive the reinforcement mechanism of the air-booster vacuum preloading method, which involves using micro cracks generated by splitting soil between the booster tube and PVD using the pressurised air. Those cracks improve the soil permeability, and have lasting effect even after air pressuring ceased.

Key words: air pressurizing, vacuum preloading, reinforcement effect, reinforcement mechanism

CLC Number: 

  • TU 470
[1] RONG Chi, CHEN Wei-zhong, YUAN Jing-qiang, ZHANG Zheng, ZHANG Yi, ZHANG Qing-yan, LIU Qi, . Study on new sodium silicate-ester grouting material and its properties of grouted-sand [J]. Rock and Soil Mechanics, 2020, 41(6): 2034-2042.
[2] PU He-fu, PAN You-fu, KHOTEJA Dibangar, ZHOU Yang. Model test on dewatering of high-water-content dredged slurry by flocculation-horizontal vacuum two-staged method [J]. Rock and Soil Mechanics, 2020, 41(5): 1502-1509.
[3] LI Jian, CHEN Shan-xiong, YU Fei, JIANG Ling-fa, DAI Zhang-jun. Discussion on mechanism of reinforcing high and steep slope with prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(2): 707-713.
[4] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[5] ZHANG Yu-guo, WAN Dong-yang, ZHENG Yan-lin, HAN Shuai, YANG Han-yue, DUAN Meng-meng. Analytical solution for consolidation of vertical drain under vacuum preloading considering the variation of radial permeability coefficient [J]. Rock and Soil Mechanics, 2019, 40(9): 3533-3541.
[6] LI Xiu-lei, LI Jin-feng, SHI Jian-yong, . Elastoplastic constitutive model for municipal solid waste considering the effect of fibrous reinforcement [J]. Rock and Soil Mechanics, 2019, 40(5): 1916-1924.
[7] LI Lin, LI Jing-pei, SUN De-an, GONG Wei-bing , . Nonlinear load-settlement analysis of pile groups considering pile installation effects [J]. Rock and Soil Mechanics, 2019, 40(2): 668-677.
[8] SHA Fei, LI Shu-cai, LIN Chun-jin, LIU Ren-tai, ZHANG Qing-song, YANG Lei, LI Zhao-feng. Research on penetration grouting diffusion experiment and reinforcement mechanism for sandy soil porous media [J]. Rock and Soil Mechanics, 2019, 40(11): 4259-4269.
[9] LIU Xiao-ke, LU Qun, LU Shi-wei, LIU Chun-long, GUO Shao-long,. Vacuum penetration and ultimate pull-out capacity of low skirted suction caissons [J]. , 2018, 39(6): 2089-2098.
[10] HUANG Chao-xuan, WANG Zheng-zhong, FANG Yong-lai,. Analytical solution of vacuum preloading foundation considering air leakage and nonlinear well resistance [J]. , 2017, 38(9): 2574-2582.
[11] LIU Yong, QI Lan, LI Shao-ming, GUO Hao-yang,. 3D Finite element analysis of vacuum preloading considering inconstant well resistance and smearing effects [J]. , 2017, 38(5): 1517-1523.
[12] WU Ya-jun, NIU Kun, TANG Hai-feng, HU Zhi-gang, LU Yi-tian,. Enhanced permeability of calcium lime in construction waste slurry improvement by vacuum preloading with flocculation [J]. , 2017, 38(12): 3453-3461.
[13] BAO Shu-feng, LOU Yan, DONG Zhi-liang, NIU Fei, XIE Rong-xing, . Development of a new apparatus for measurement of groundwater level under vacuum pre-loading [J]. , 2017, 38(10): 3067-3073.
[14] SHEN Yang , WANG Bao-guang , TAO Ming-an , WANG Xin , DU Wen-han,. Improvement of preparing technique for hollow cylinder specimen of remolded clay and its application [J]. , 2015, 36(S1): 697-701.
[15] CHEN Dong-fang ,FENG Xia-ting ,XU Ding-ping ,JIANG Quan ,LIU Guo-feng ,JIAN Chong-lin,. An equivalent numerical method for evaluating the reinforcing effectiveness of grouted bolts [J]. , 2015, 36(4): 1195-1204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!