Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (6): 1557-1567.doi: 10.16285/j.rsm.2020.1502

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effects of loading rate on SBPT responses of Zhanjiang structured clay

SHU Rong-jun1, 2, KONG Ling-wei1, 2, SHI Wen-zhuo1, 2, LIU Bing-heng1, 2, LI Cheng-sheng1, 2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-10-08 Revised:2021-03-01 Online:2021-06-11 Published:2021-06-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41877281).

Abstract:

The study on influence of loading rate on mechanical behavior of Zhanjiang clay, which is a kind of sensitive clay with high yield strength, could be noteworthy. In order to study the loading rate effects on intact mechanical properties of Zhanjiang clay, the self-boring pressuremeter tests (SBPT) under five different loading rates have been carried out. The influence of stress rate on undrained shear strength, linear stiffness and non-linear degradation of shear modulus of the soil have been discussed. It is shown that the greater stress rate results in higher undrained shear strength, proposing strong linear correlation between two variables, and that behaves differently from the results of tests controlling strain rate given in literature. The linear secant shear modulus Gur increases with stress rate and the undrained shear strengths varies within a class with small width after normalized by corresponding Gur, which indicates little effect caused by loading rate on the strain corresponding to the peak strength. The significant degradation of tangential shear modulus Gt, at higher gradient and the steeper Gt-γ decay curve have been observed when at higher stress rate. The value of shear strain where Gt decreases to less than Gur is about 0.1% for all stress rate conditions. The loading rate significantly affects the amplitude and the gradient of the decay of Gt in the corresponding class. The smaller the stress rate leads to the lower strain level where the decay of Gt mainly occurs. It is recognized that the special microstructure could account for the loading rate effects of Zhanjiang clay and this comment is preliminarily proved by super-mini-penetration tests conducted on both undisturbed and remolded samples. It is recommended that special attention should be paid to both the loading rate effects on in-situ mechanical properties and the influence of “loading rate history” on creep behavior of soils.

Key words: structured clay, self-boring pressuremeter test, super mini-penetration test, rate effects, shear modulus, G-? decay curves

CLC Number: 

  • TU413
[1] AN Ran, KONG Ling-wei, SHI Wen-zhuo, GUO Ai-guo, ZHANG Xian-wei, . In-situ stiffness decay characteristics and its numerical descriptions of structured clays [J]. Rock and Soil Mechanics, 2022, 43(S1): 410-418.
[2] JIAO Yu-qi, HE Lin-lin, LIANG Yue, LIU Xu-fei, . Study of vertical bearing capacity of spudcan foundations considering strain-softening effect of structured clay [J]. Rock and Soil Mechanics, 2022, 43(5): 1374-1382.
[3] WANG Bin, HAN You-ming, ZHOU Xin, CHEN Cheng, ZHANG Xian-wei, GUI Lei, . In-situ test of shear modulus decay characteristics of lacustrine clay layer in Taihu Lake [J]. Rock and Soil Mechanics, 2021, 42(7): 2031-2040.
[4] ZHOU Yue-feng, YANG Zhe, RAO Xi-bao, XIAO Guo-qiang, ZHOU Li-ming, . Bending-extension element experiment to obtain elastic parameters of clay under different moisture contents [J]. Rock and Soil Mechanics, 2020, 41(S1): 387-393.
[5] ZHU Nan, LIU Chun-yuan, ZHAO Xian-hui, WANG Wen-jing, . Micro-structure characteristics of structured clay under different stress paths in K0 consolidated drained tests [J]. Rock and Soil Mechanics, 2020, 41(6): 1899-1910.
[6] LIANG Ke, CHEN Guo-xing, HANG Tian-zhu, LIU Kang, HE Yang, . A new prediction model of small-strain shear modulus of sandy soils [J]. Rock and Soil Mechanics, 2020, 41(6): 1963-1970.
[7] LIANG Ke, CHEN Guo-xing, LIU Kang, WANG Yan-zhen, . Degradation properties and prediction model of maximum shear modulus of saturated coral sand under cyclic triaxial loading [J]. Rock and Soil Mechanics, 2020, 41(2): 601-611.
[8] WU Qi, LIU Kang, GUO Qi-zhou, ZHAO Kai, CHEN Guo-xing, . A new method for evaluating small-strain shear modulus of sandy soils based on binary medium model [J]. Rock and Soil Mechanics, 2020, 41(11): 3641-3650.
[9] LIANG Ke, HE Yang, CHEN Guo-xing, . Experimental study of dynamic shear modulus and damping ratio characteristics of coral sand from Nansha Islands [J]. Rock and Soil Mechanics, 2020, 41(1): 23-31.
[10] YANG Wen-bao, WU Qi, CHEN Guo-xing, . Dynamic shear modulus prediction method of undisturbed soil in the estuary of the Yangtze River [J]. Rock and Soil Mechanics, 2019, 40(10): 3889-3896.
[11] SHENG Yun-feng, CHEN Yuan, ZHOU Wei, MA Gang, CHANG Xiao-lin, . Dynamic response analysis of rockfill dam based on modified dynamic shear modulus model [J]. Rock and Soil Mechanics, 2018, 39(S2): 405-414.
[12] ZHANG Wei, LI Ya, ZHOU Song-wang, JIANG Zheng-bo, WU Fei, LIANG Wen-zhou,. Experimental research on cyclic behaviors of clay in the northern region of South China Sea [J]. , 2018, 39(7): 2413-2423.
[13] KONG Gang-qiang, LI Hui, WANG Zhong-tao , WEN Lei,. Comparison of dynamic properties between transparent sand and natural sand [J]. , 2018, 39(6): 1935-1940.
[14] WU Meng-tao, LIU Fang-cheng, CHEN Ju-long, CHEN Lu. Influence of water content on dynamic shear modulus and damping ratio of rubber-sand mixture under large strains [J]. , 2018, 39(3): 803-814.
[15] CHEN Shu-feng, KONG Ling-wei, LI Cheng-sheng, . Nonlinear characteristics of Poisson's ratio of silty clay under low amplitude strain [J]. , 2018, 39(2): 580-588.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[3] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[4] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[5] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[6] FAN Heng-hui, GAO Jian-en, WU Pu-te, LUO Zong-ke. Physicochemical actions of stabilized soil with cement-based soil stabilizer[J]. , 2010, 31(12): 3741 -3745 .
[7] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[8] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[9] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .
[10] ZHANG Xue-chan , GONG Xiao-nan , YIN Xu-yuan , ZHAO Yu-bo. Monitoring analysis of retaining structures for Jiangnan foundation pit of Qingchun road river-crossing tunnel in Hangzhou[J]. , 2011, 32(S1): 488 -0494 .