Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (6): 1743-1754.doi: 10.16285/j.rsm.2020.1420

• Numerical Analysis • Previous Articles     Next Articles

Discrete element numerical simulation of cable-soil deformation compatibility in borehole distributed optical fiber monitoring

XIANG Fu-lin1, YANG Tian-liang2, GU Kai1, SHI Bin1, LIU Chun1, LIU Su-ping1, ZHANG Cheng-cheng1, JIANG Yue-hua3   

  1. 1. School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China; 2. Key Laboratory of Land Subsidence Monitoring and Prevention of Ministry of Land and Resources of China, Shanghai Institute of Geological Survey, Shanghai 201204, China; 3. Nanjing Center, China Geological Survey, Nanjing, Jiangsu 210016, China
  • Received:2020-09-21 Revised:2021-03-01 Online:2021-06-11 Published:2021-06-16
  • Supported by:
    This work was supported by the Open Fund Project of Key Laboratory of Land Subsidence Monitoring and Prevention, Ministry of Land and Resources (KLLSMP201702), the General Program of National Natural Science Foundation of China(41977217) and the Comprehensive Evaluation of Geological Resources and Environment in the Yangtze River Economic Belt(DD20190260).

Abstract: Land subsidence has been one of the main geological disasters with great harm. Full section monitoring of land subsidence borehole using distributed fiber optic sensing (DFOS) techniques has been proved to be an effective method. The deformation compatibility between cable and soil is a key factor which matters the land subsidence monitoring effectiveness. Using the discrete element numerical simulation software MatDEM, a 2D discrete element cable pull-out test model was established to explore the deformation compatibility between cable and the surrounding soil during pull-out under different confining pressures. The results show that the 2D discrete element cable pull-out tests model can accurately reflect the distribution of axial strain along cable and the displacement of soil element during the pull-out. The curves of pull-out force versus pull-out displacement and the distribution of axial strain along cable under different confining pressures show a progressive failure mode. Based on the slip depth of cable obtained by the discrete element method, the coefficient of cable-soil deformation compatibility is corrected. Moreover, the monitoring data of land subsidence in Shengze, Suzhou, was taken as an example to analyze the cable-soil deformation compatibility under different confining pressures and pull-out displacement conditions. The critical confining pressure is about 0.19 MPa and the critical depth is about 17 m in this region. The results verify the feasibility of the discrete element numerical simulation method in exploring the cable-soil deformation compatibility, and further demonstrate the reliability of DFOS in land subsidence monitoring.

Key words: land subsidence, distributed fiber optic sensing(DFOS), deformation compatibility, discrete element, MatDEM

CLC Number: 

  • TU433
[1] SHEN Hao-han, ZHANG Hai, FAN Jun-kai, XU Rui-yang, ZHANG Xiao-ming. Influence of contact radius on rock mechanical property and its application in discrete element method software EDEM [J]. Rock and Soil Mechanics, 2022, 43(S1): 580-590.
[2] YANG Lei, TU Dong-mei, ZHU Qi-yin, WU Ze-xiang, YU Chuang, . Experimental research on discrete element method of particle cyclic thermal consolidation considering the influence of variable temperature amplitude [J]. Rock and Soil Mechanics, 2022, 43(S1): 591-600.
[3] LIU Yun-he, WANG Qi, NING Zhi-yuan, MENG Xiao, DONG Jing, YANG Di-xiong, . Development of a linear parallel bond model considering damage and parameter influence analysis [J]. Rock and Soil Mechanics, 2022, 43(3): 615-624.
[4] ZHANG Heng-zhi, XU Chang-jie, HE Zhai-bing, HUANG Zhan-jun, HE Xiao-hui, . Study of active earth pressure of finite soils under different retaining wall movement modes based on discrete element method [J]. Rock and Soil Mechanics, 2022, 43(1): 257-267.
[5] WANG Xu-yi, HUANG Shu-ling, DING Xiu-li, ZHOU Huo-ming. Study on the effect of inhomogeneous bedding plane on the mechanical properties of uniaxial compression of layered rock mass [J]. Rock and Soil Mechanics, 2021, 42(2): 581-592.
[6] ZHANG Heng-zhi, XU Chang-jie, LIANG Lu-ju, HOU Shi-lei, FAN Run-dong, FENG Guo-hui. Discrete element simulation and theoretical study of active earth pressure against rigid retaining walls under RB mode for finite soils [J]. Rock and Soil Mechanics, 2021, 42(10): 2895-2907.
[7] CUI Wei, WEI Jie, ZHANG Gui-ke, LI Hong-bi, . Research on collapse characteristics of binary particle column based on discrete element simulation [J]. Rock and Soil Mechanics, 2021, 42(1): 280-290.
[8] XUE Ya-dong, ZHOU Jie, ZHAO Feng, LI Xing. Rock breaking mechanism of TBM cutter based on MatDEM [J]. Rock and Soil Mechanics, 2020, 41(S1): 337-346.
[9] BAO Ning, WEI Jing, CHEN Jian-feng. Three dimensional discrete element analysis of soil arching in piled embankment [J]. Rock and Soil Mechanics, 2020, 41(S1): 347-354.
[10] YANG Ji-ming, ZHANG Xiao-yong, ZHANG Fu-you, ZENG Chao-feng, MEI Guo-xiong, . Mesoscopic study on bearing characteristics of pile foundation under pile-soil-cap combined interaction in sand [J]. Rock and Soil Mechanics, 2020, 41(7): 2271-2282.
[11] MAO Hao-yu, XU Nu-wen, LI Biao, FAN Yi-lin, WU Jia-yao, MENG Guo-tao, . Stability analysis of an underground powerhouse on the left bank of the Baihetan hydropower station based on discrete element simulation and microseismic monitoring [J]. Rock and Soil Mechanics, 2020, 41(7): 2470-2484.
[12] XU Dong-sheng, HUANG Ming, HUANG Fo-guang, CHEN Cheng. Failure behavior of cemented coral sand with different gradations [J]. Rock and Soil Mechanics, 2020, 41(5): 1531-1539.
[13] WU Qi-xin, YANG Zhong-xuan. Incremental behavior of granular soils: a strain response envelope perspective [J]. Rock and Soil Mechanics, 2020, 41(3): 915-922.
[14] XU Jin, WANG Shao-wei, YANG Wei-tao. Analysis of coupled viscoelastic deformation of soil layer with compressible constituent due to groundwater level variation [J]. Rock and Soil Mechanics, 2020, 41(3): 1065-1073.
[15] KUANG Du-min, LONG Zhi-lin, ZHOU Yi-chun, YAN Chao-ping, CHEN Jia-min, . Prediction of rate-dependent behaviors of cemented geo-materials based on BP neural network [J]. Rock and Soil Mechanics, 2019, 40(S1): 390-399.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIA Dong-zhou,HE Yi-bin,LIU Jian-hua. Analysis of aseismic capability and influential factors for rigid pile composite foundation-superstructure dynamic interaction system[J]. , 2009, 30(11): 3505 -3511 .
[2] ZHEN Wen-zhan,SUN De-an,DUAN Bo. Analysis of strain localization in overconsolidated clay specimens along different stress paths[J]. , 2011, 32(1): 293 -298 .
[3] WU Kai,SHENG Qian,MEI Song-hua,LI Jia. A model of PSO-LSSVM and its application to displacement back analysis[J]. , 2009, 30(4): 1109 -1114 .
[4] LIU Zhen, ZHOU Cui-ying, ZHU Feng-xian, ZHANG Lei. Critical criterion for microstructure evolution of soft rocks in softening process[J]. , 2011, 32(3): 661 -666 .
[5] LUO Yao-wu,HU Qi,LING Dao-sheng,CHEN Zheng,CHEN Yun-min. Model experimental research on effects of properties of interface between piles and sand on bearing behavior of uplift piles in sand[J]. , 2011, 32(3): 722 -726 .
[6] SUN Bing,ZENG Sheng,DING De-xin,QI Chun-ming,YU Qing. Research on transmit rules of stress wave with low strain in dynamic test pile and anchorage bolt[J]. , 2011, 32(4): 1143 -1148 .
[7] CHEN Zhen-hua , LI Ling-ling , WANG Li-zhong , XU Yan , YANG Yi. Analysis and material selection of reinforced geosynthetics in sea dike project[J]. , 2011, 32(6): 1824 -1830 .
[8] YAN Geng-sheng, ZHANG Hu-yuan, WANG Xiao-dong, YANG Bo, LI Min. Durability of earthen architecture ruins under cyclic freezing and thawing[J]. , 2011, 32(8): 2267 -2273 .
[9] ZHANG Bo , LI Shu-cai , ZHANG Dun-fu , LI Ming-tian , SHAO Dong-liang. Study of stress fields of simple harmonic wave propagation in viscoelastic media[J]. , 2011, 32(8): 2429 -2434 .
[10] GUO Xiao-hong , CHEN Fei-fei , CHU Yi-dun, QIAO Chun-jiang . Research on support techniques for tunnel in watery and weak stratum[J]. , 2011, 32(S2): 449 -454 .