Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (8): 2035-2059.doi: 10.16285/j.rsm.2021.1926

• Fundamental Theroy and Experimental Research •     Next Articles

Research progress on support technology and methods for soft rock with large deformation hazards in China

KANG Yong-shui1, 2, GENG Zhi1, 2, LIU Quan-sheng3, LIU Bin1, ZHU Yuan-guang1   

  1. 1. State Key Laboratory of Rock Mechanics and Engineering, Wuhan Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
  • Received:2021-11-15 Revised:2022-01-10 Online:2022-08-11 Published:2022-08-17
  • Supported by:
    This work was supported by the General Program of National Natural Science Foundation of China (51774267, 41941018).

Abstract:

Soft rock engineering involves many important engineering fields such as mining, hydraulic engineering, transport and national defense. With the increase of mining depth and the development of tunnel engineering, a large number of tunnels and roadways need to pass through soft rock formations, in which the problems such as high geostress and broken and weak surrounding rocks are prominent. Large deformation disasters of soft rocks pose serious threats to engineering safety and cause enormeous economic losses. In this paper, the research progress on soft rock support in China is first reviewed, and the research status of technology for soft rock control for large deformation hazards is summarized in the following aspects. (1) Passive support methods represented by improved rigid support, retractable support and compound lining. (2) Reinforced active support technology using high-strength bolts and cables. (3) Soft rock modification technology dominated by grouting modification. (4) Soft rock reinforcement with pressure relief as the core idea. (5) Compound support methods. Furthermore, the development of different supporting technologies and methods are elaborated, and the applicable conditions, advantages and disadvantages of different supporting methods are analyzed. It is usually difficult to meet the demand of large deformation control of soft rock relying on a single support method. Therefore, it is urgent to solve the problems of the prevention and control of large deformation disaster of soft rock to realize the efficient collaborative control among different supporting measures and achieve the real-time accurate monitoring of deformation and stress fields. Finally, based on the above research results, the development tendency of support technology for soft rock with large deformation hazards is prospected and the countermeasures are proposed.

Key words: large deformation of soft rock, support, technical status, research progress, surrounding rock control

CLC Number: 

  • TU 452
[1] LUO Wei-ping, YUAN Da-jun, JIN Da-long, LU Ping, CHEN Jian, GUO Hai-peng, . Centrifugal model test on relationship between support pressure of shield tunnel face and ground deformation in water rich sand strata [J]. Rock and Soil Mechanics, 2022, 43(S2): 345-354.
[2] YU Wei-jian, LI Ke, LIU Ze, GUO Han-xiao, AN Bai-fu, WANG Ping, . Stability analysis and deformation control technology for weakly cemented roof of coal roadway [J]. Rock and Soil Mechanics, 2022, 43(S2): 382-391.
[3] LIU Xue-wei, LIU Quan-sheng, WANG Zhi-qiang, LIU Bin, KANG Yong-shui, WANG Chuan-bing, . Step by step and combined supporting technique with steel grid frame for soft and fractured rock roadway [J]. Rock and Soil Mechanics, 2022, 43(S1): 469-478.
[4] LI Chun-lin. Curved solid failure model and calculation method of supporting pressure for shield tunnel excavation face [J]. Rock and Soil Mechanics, 2022, 43(8): 2092-2102.
[5] DONG Jian-hua, XU Bin, WU Xiao-lei, LIAN Bo, . Elastic-plastic deformation of surrounding rocks under graded yielding support of tunnel [J]. Rock and Soil Mechanics, 2022, 43(8): 2123-2135.
[6] DENG You-sheng, LI Ling-tao, PENG Cheng-pu, LI Long, LIU Jun-cong, FU Yun-bo. Model tests on geogrid reinforced pile supported embankment under static and dynamic loads [J]. Rock and Soil Mechanics, 2022, 43(8): 2149-2156.
[7] ZHANG Jian, QI Rui-yu, ZONG Jing-yao, FENG Tu-gen. Failure mechanism of shield tunnel circumferential excavation face and the influence of the dilatancy effect on the tunnel stability [J]. Rock and Soil Mechanics, 2022, 43(7): 1833-1844.
[8] WANG Kai, YANG Bao-gui, WANG Peng-yu, LI Chong, . Deformation and failure characteristics of gob-side entry retaining in soft and thick coal seam and the control technology [J]. Rock and Soil Mechanics, 2022, 43(7): 1913-1924.
[9] WU Xiang-ye, WANG Jing-ya, CHEN Shi-jiang, ZHANG Yu-jiang, BU Qing-wei, . Regulation principle and stability control of plastic zone in repeated mining roadway [J]. Rock and Soil Mechanics, 2022, 43(1): 205-217.
[10] LI Yuan-hai, LIU De-zhu, YANG Shuo, KONG Jun, . Experimental investigation on surrounding rock stress and deformation rule of TBM tunneling in deep mixed strata [J]. Rock and Soil Mechanics, 2021, 42(7): 1783-1793.
[11] WU Ben, LIU Wei, SHI Pei-xin, FU Chun-qing, . Two-dimensional spiral failure model of the heading face of shield tunneling [J]. Rock and Soil Mechanics, 2021, 42(3): 767-774.
[12] ZHANG Kai, ZHANG Ke, BAO Rui, LIU Xiang-hua, QI Fei-fei, . Intelligent prediction of landslide displacements based on optimized empirical mode decomposition and K-Mean clustering [J]. Rock and Soil Mechanics, 2021, 42(1): 211-223.
[13] XU Gang, ZHANG Chun-hui, YU Yong-jiang, . Experiments of overburden breaking and compression frame of fully mechanized caving face and the prediction model [J]. Rock and Soil Mechanics, 2020, 41(S1): 106-114.
[14] TIAN Yun, CHEN Wei-zhong, TIAN Hong-ming, ZHAO Ming, ZENG Chun-tao. Study on design of buffer layer yielding support considering time-effect weakening of soft rock strength [J]. Rock and Soil Mechanics, 2020, 41(S1): 237-245.
[15] LIU Quan-sheng, WANG Dong, ZHU Yuan-guang, YANG Zhan-biao, BO Yin. Application of support vector regression algorithm in inversion of geostress field [J]. Rock and Soil Mechanics, 2020, 41(S1): 319-328.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .