Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (4): 1100-1110.doi: 10.16285/j.rsm.2022.0700

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Shaking table test of dynamic response of a single pile under different thicknesses of soft soil layers in a strong earthquake area

ZHANG Cong1, FENG Zhong-ju1, WANG Fu-chun1, KONG Yuan-yuan1, WANG Xi-qing1, MA Xiao-qian2   

  1. 1. School of Highway, Chang’an University, Xi’an, Shaanxi 710064, China; 2. Hainan Provincial Transportation Planning Survey and Design Research Institute, Haikou, Hainan 570203, China
  • Received:2022-05-11 Accepted:2022-09-30 Online:2023-04-18 Published:2023-04-29
  • Supported by:
    This work was supported by the Hainan Provincial Transportation Science and Technology Project (HNZXY2015-045R), the Youth Science Fund of National Natural Science Foundation of China (4190070568) and the Fundamental Research Funds for the Central Universities, CHD (300102218115).

Abstract: In order to investigate the influence of the different thicknesses of soft soil layers on the dynamic response characteristics of a single pile under different types of seismic waves, the dynamic response characteristics of acceleration, horizontal displacement, bending moment, and pile foundation damage were analyzed by shaking table test. The test results show that under the seismic wave, the restraint behavior of soil around the pile is significantly affected by the thickness of the soft soil layer. The magnifying effect of pile shaft acceleration in soft soil is the most significant. The acceleration magnification factor of the pile top is positively correlated with the thickness of the soft soil layer. The horizontal displacement of the pile top reaches the maximum when the thickness of the soft soil layer is the maximum. The maximal bending moment of the pile appears in the soft soil layer and increases with its thickness. For different soil thicknesses, the maximal bending moment of the pile shaft is less than the design value of bending capacity, and the pile has good integrity. In the seismic design and calculation of pile foundation, the seismic capacity of pile foundation in soft soil layer should be strengthened, and a variety of seismic waves should be selected for seismic checking.

Key words: pile foundation, soft soil, shaking table test, strong earthquake area, dynamic response

CLC Number: 

  • TU473
[1] JIA Ke-min, XU Cheng-shun, DU Xiu-li, ZHANG Xiao-ling, SONG Ji, SU Zhuo-lin, . Mechanism of liquefaction-induced lateral spreading in liquefiable inclined sites [J]. Rock and Soil Mechanics, 2023, 44(6): 1837-1848.
[2] CHEN Hui-yun, FENG Zhong-ju, BAI Shao-fen, DONG Jian-song, XIA Cheng-ming, CAI Jie, . Experimental study on load transfer mechanism of bridge pile foundation passing through karst cave [J]. Rock and Soil Mechanics, 2023, 44(5): 1405-1415.
[3] HUANG Juan, HU Zhong-wei, YU Jun, LI Dong-kai. Analytical solution to lateral dynamic impedance of piles in viscous liquefied soil [J]. Rock and Soil Mechanics, 2023, 44(5): 1445-1456.
[4] ZHANG Shuo-cheng, CHEN Wen-hua. Dynamic response of a lined tunnel in cold regions considering anisotropic frost heave [J]. Rock and Soil Mechanics, 2023, 44(5): 1467-1476.
[5] WANG Li-yan, JI Wen-wei, TAO Yun-xiang, TANG Yue, WANG Bing-hui, CAI Xiao-guang, ZHANG Lei, . Experimental study on seismic performances of geogrid striped-reinforced waste tire-faced retaining walls [J]. Rock and Soil Mechanics, 2023, 44(4): 931-940.
[6] LIU Xin-rong, GUO Xue-yan, XU Bin, ZHOU Xiao-han, ZENG Xi, XIE Ying-kun, WANG Yan, . Investigation on dynamic cumulative damage mechanism of the dangerous rock slope including deteriorated rock mass in hydro-fluctuation belt [J]. Rock and Soil Mechanics, 2023, 44(3): 637-648.
[7] ZHANG Xin, DONG Hao, XU Ying-ying, WANG Liu-yue, . Experimental study on the bearing capacity of piles in sand under cyclic loading [J]. Rock and Soil Mechanics, 2023, 44(3): 673-684.
[8] YAN Zhi-xiao, LI Yu-run, WANG Dong-sheng, WANG Yong-zhi, . Centrifugal experimental study on seismic response of bridge pile group foundation in overlaying water sandy field [J]. Rock and Soil Mechanics, 2023, 44(3): 861-872.
[9] ZHENG Chang-jie, CUI Yi-qin, WU Chen, LUO Tong, LUAN Lu-bao, . Simplified analytical solution for horizontal seismic response of single piles to vertically incident S waves [J]. Rock and Soil Mechanics, 2023, 44(2): 327-336.
[10] XU Ming, YU Xiao-yue, ZHAO Yuan-ping, HU Jia-ju, ZHANG Xiao-ting. Analysis of seismic dynamic response and failure mode of bedding rock slope with laminated fractured structure [J]. Rock and Soil Mechanics, 2023, 44(2): 362-372.
[11] PENG Wen-zhe, ZHAO Ming-hua, YANG Chao-wei, ZHAO Heng, . Model test and finite beam element solution of cyclic lateral characteristics of piles in sloping ground [J]. Rock and Soil Mechanics, 2023, 44(2): 381-391.
[12] SHI Lan-tian, LI Chuan-xun, YANG Yang. Analytical solution for consolidation of soft soils with vertical drains by considering variable well resistance with time and depth and time-dependent loading [J]. Rock and Soil Mechanics, 2023, 44(1): 183-192.
[13] HU Yao, LEI Hua-yang, LEI Zheng, LIU Ying-nan, . Shaking table test on seismic response of stacked tunnels under three-directional earthquake wave excitation [J]. Rock and Soil Mechanics, 2022, 43(S2): 104-116.
[14] LIU Si-hong, LI Bo-wen, LU Yang, SHEN Chao-min, FANG Bin-xin, HANG Dan, . Shaking table tests on liquefaction resistance performance of soilbag-stacked cushion [J]. Rock and Soil Mechanics, 2022, 43(S2): 183-192.
[15] ZHENG Sen, LI Wei-hua, CUI Jie, LI Ya-dong, . Development and performance test of a stiffness-variable multidirectional laminar shear model container [J]. Rock and Soil Mechanics, 2022, 43(S2): 616-625.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIA Dong-zhou,HE Yi-bin,LIU Jian-hua. Analysis of aseismic capability and influential factors for rigid pile composite foundation-superstructure dynamic interaction system[J]. , 2009, 30(11): 3505 -3511 .
[2] ZHEN Wen-zhan,SUN De-an,DUAN Bo. Analysis of strain localization in overconsolidated clay specimens along different stress paths[J]. , 2011, 32(1): 293 -298 .
[3] WU Kai,SHENG Qian,MEI Song-hua,LI Jia. A model of PSO-LSSVM and its application to displacement back analysis[J]. , 2009, 30(4): 1109 -1114 .
[4] LIU Zhen, ZHOU Cui-ying, ZHU Feng-xian, ZHANG Lei. Critical criterion for microstructure evolution of soft rocks in softening process[J]. , 2011, 32(3): 661 -666 .
[5] LUO Yao-wu,HU Qi,LING Dao-sheng,CHEN Zheng,CHEN Yun-min. Model experimental research on effects of properties of interface between piles and sand on bearing behavior of uplift piles in sand[J]. , 2011, 32(3): 722 -726 .
[6] SUN Bing,ZENG Sheng,DING De-xin,QI Chun-ming,YU Qing. Research on transmit rules of stress wave with low strain in dynamic test pile and anchorage bolt[J]. , 2011, 32(4): 1143 -1148 .
[7] CHEN Zhen-hua , LI Ling-ling , WANG Li-zhong , XU Yan , YANG Yi. Analysis and material selection of reinforced geosynthetics in sea dike project[J]. , 2011, 32(6): 1824 -1830 .
[8] YAN Geng-sheng, ZHANG Hu-yuan, WANG Xiao-dong, YANG Bo, LI Min. Durability of earthen architecture ruins under cyclic freezing and thawing[J]. , 2011, 32(8): 2267 -2273 .
[9] ZHANG Bo , LI Shu-cai , ZHANG Dun-fu , LI Ming-tian , SHAO Dong-liang. Study of stress fields of simple harmonic wave propagation in viscoelastic media[J]. , 2011, 32(8): 2429 -2434 .
[10] GUO Xiao-hong , CHEN Fei-fei , CHU Yi-dun, QIAO Chun-jiang . Research on support techniques for tunnel in watery and weak stratum[J]. , 2011, 32(S2): 449 -454 .