Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (12): 3522-3530.doi: 10.16285/j.rsm.2023.1168

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis of factors affecting permeability of calcareous sand in salt solution environment

ZHENG Si-wei1, 2, HU Ming-jian2, HUO Yu-long3, LI Yu4   

  1. 1. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 3. Hubei Earthquake Agency, Wuhan, Hubei 430071, China; 4. College of Civil Engineering and Architecture, Guilin University of Technology, Guilin, Guangxi 541004, China
  • Received:2023-08-02 Accepted:2023-10-12 Online:2023-12-20 Published:2023-12-21
  • Supported by:
    This work was supported by the National Key Technologies R&D Program of China (2022YFC3102101) and the Key Program of National Natural Science Foundation of China (42377176).

Abstract:

Permeability is the capacity of a soil for transmitting a fluid, e.g., a salt solution, through soil pores. The permeability coefficient K is an important measurement of the soil permeability, which is affected by various factors. The existing research on the permeability of sandy soil is basically carried out in the freshwater environment. However, the calcareous sand is a typical marine sedimentary sand, which is deposited in the seawater environment with certain salt concentrations. In order to investigate the influence of void ratio, particle size and concentration of the salt solution on the permeability of calcareous sand in a salt solution environment, constant head and falling head permeability tests were carried out using the meter KAST - soil saturated hydraulic conductivity. The microscopic characteristics were investigated through Zeta potential and contact angle tests. The results showed that the mean particle size has the greatest influence on the permeability coefficient of a calcareous sand, and the change of the mean particle size will even lead to the difference in the order of magnitude of the permeability coefficient. The permeability coefficient (K) is negatively correlated with the salinity of the transmitting solution (P), and positively correlated with the porosity (n) and the mean particle size (da). A model for predicting the permeability coefficient of calcareous sand taking into account the salt content of transmitting solution has been proposed based on the current experimental studies on the influencing factors. The proposed model can provide a tool for assessing the permeability of artificially reclaimed islands and reefs in the South China Sea and analyzing the evolution of ground freshwater.

Key words: permeability coefficient, salt content, void ratio, particle size, prediction model

CLC Number: 

  • TU42
[1] LEI Hua-yang, BO Yu, MA Chang-yuan, WANG Lei, ZHANG Wei-di, . Variation pattern and prediction model of clay specific heat capacity considering multi-factors [J]. Rock and Soil Mechanics, 2023, 44(增刊): 1-11.
[2] GUI Yue, XIE Zheng-peng, GAO Yu-feng, . Influence and mechanism of organic matter on thermal conductivity of clay soil [J]. Rock and Soil Mechanics, 2023, 44(增刊): 154-162.
[3] CHENG Guang, FAN Wen, YU Ning-yu, JIANG Cheng-cheng, TAO Yi-quan, . Correlation between soil-water characteristics and microstructure of soil-rock mixture [J]. Rock and Soil Mechanics, 2023, 44(增刊): 365-374.
[4] LIU Fei-yu, ZHANG Shi-xun, XIONG Bo, . Effect of roughness on shear properties of sand-concrete interface with different particle sizes [J]. Rock and Soil Mechanics, 2023, 44(增刊): 419-426.
[5] LI Pin-liang, XU Qiang, LIU Jia-liang, HE Pan, JI Xu, CHEN Wan-lin, PENG Da-lei, . Experimental study on the micromechanism of salt influence on the permeability of remolded loess [J]. Rock and Soil Mechanics, 2023, 44(增刊): 504-512.
[6] WU Guang-shui, TIAN Hui-hui, HAO Feng-fu, WANG Shu-qi, YANG Wen-zhou, ZHU Ting-mei, . Rapid prediction of the permeability coefficient for soil of different dry densities with NMR T2 distribution [J]. Rock and Soil Mechanics, 2023, 44(增刊): 513-520.
[7] PAN Jia-jun, SUN Xiang-jun, ZUO Yong-zhen, WANG Jun-peng, LU Yi-wei, HAN Bing. Effects of skeleton void ratio on the strength and deformation characteristics of coarse-grained soil [J]. Rock and Soil Mechanics, 2023, 44(8): 2186-2194.
[8] ZHANG Yu, HE Xiang, LU Hua-ming, MA Guo-liang, LIU Han-long, XIAO Yang, . Experimental study on sand anti-seepage by microorganism-bentonite combined mineralization [J]. Rock and Soil Mechanics, 2023, 44(8): 2337-2349.
[9] ZHOU En-quan, YAO Yuan, CUI Lei, WANG Long, . Shear strength characteristics of unsaturated rubber silt mixtures [J]. Rock and Soil Mechanics, 2023, 44(7): 1949-1958.
[10] YIN Fu-shun, LI Sa, LIU Xin, . Experimental study on single particle strength and compression properties of calcareous coarse sand [J]. Rock and Soil Mechanics, 2023, 44(4): 1120-1129.
[11] ZHANG Jin-liang, YANG Feng-wei, CAO Zhi-guo, SU Wei-lin, . Experimental study on ultra-high pressure water jet rock-breaking at high linear speed [J]. Rock and Soil Mechanics, 2023, 44(3): 615-623.
[12] WANG Shu-wen, JU Wen-jun, ZHANG Chun-hui, SU Shi-jie, LU Chuang, . Stress jumping of elastic-brittle circular coal roadway and prediction model of rock burst [J]. Rock and Soil Mechanics, 2023, 44(3): 873-883.
[13] HE Gui-cheng, TANG Meng-yuan, LI Yong-mei, LI Chun-guang, ZHANG Zhi-jun, WU Ling-ling. Experiment on the impermeability of uranium tailings treated by microbial induced calcium carbonate precipitation combined with modified jute fiber [J]. Rock and Soil Mechanics, 2023, 44(12): 3459-3470.
[14] JIN Jia-xu, ZHU Lei, LIU Lei, CHEN Yi-jun, YAO Yuan, GAO Teng-fei, LI Ruo-xin, . Gas pressure monitoring test and prediction model of single well aeration in landfill [J]. Rock and Soil Mechanics, 2023, 44(1): 259-267.
[15] LI Shi-bo, DAI Jun-fang, WU Jiang-wei, XIAO Le-le, . Minimum void ratio distribution and model verification considering influence of grain size fraction [J]. Rock and Soil Mechanics, 2022, 43(S2): 193-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[3] LI Lei, ZHU Wei, LIN Cheng, T. OHKI. Study of wet and dry properties of solidified sludge[J]. , 2009, 30(10): 3001 -3004 .
[4] GUO Jun-hui, CHEN Wei-guo, ZHANG Bin. Research on creep property of geogrids at a low temperature[J]. , 2009, 30(10): 3009 -3012 .
[5] LIU Zhen-ping, HE Huai-jian, LI Qiang, ZHU Fa-hua. Study of the technology of 3D modeling and visualization system based on Python[J]. , 2009, 30(10): 3037 -3042 .
[6] ZHAO Ming-hua, LIU Xiao-ping, HUANG Li-kui. Study of characteristics of seepage of roadbed’s fissures[J]. , 2009, 30(10): 3122 -3126 .
[7] DING Pei-zhong, ZHOU Mi, ZHANG Wei. Experimental research on clogging of mat base of inside and outside liner of Yellow River-crossing tunnel by concrete construction[J]. , 2009, 30(10): 3159 -3162 .
[8] JIANG Xiao-wei, WAN Li, WANG Xu-sheng, WU Xiong, CHENG Hui-hong. Estimation of depth-dependent hydraulic conductivity and deformation modulus using RQD[J]. , 2009, 30(10): 3163 -3167 .
[9] ZHONG Jia-yu, ZHENG Yong-lai, NI Yin. Experimental study of response pattern of pore water pressure on sandy seabed under wave action[J]. , 2009, 30(10): 3188 -3193 .
[10] SUN De-an. Hydro-mechanical behaviours of unsaturated soils and their elastoplastic modelling[J]. , 2009, 30(11): 3217 -3231 .