Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (3): 873-883.doi: 10.16285/j.rsm.2022.0578

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Stress jumping of elastic-brittle circular coal roadway and prediction model of rock burst

WANG Shu-wen1, JU Wen-jun2, ZHANG Chun-hui3, SU Shi-jie4, LU Chuang2   

  1. 1. China National Coal Group Corporation, Beijing 100120, China; 2. CCTEG Coal Mining Research Institute, Beijing 100014, China; 3. Hebei Technological Innovation Center of Disaster Prevention and Mitigation Engineering of Geotechnical and Structural System, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China; 4. Menkeqing Coal Mine, Zhongtian Hechuang Energy Co., Ltd, Erdos, Inner Mongolia 017000, China
  • Received:2022-04-22 Accepted:2022-06-09 Online:2023-03-21 Published:2023-03-24
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51574139, 51704155) and the Key Project of Hebei Province Department of Education (ZD2020338).

Abstract: In order to predict the rock burst disasters of coal roadway, the coal with bump tendency is regarded as a perfectly elastic-brittle material, and the mechanical model of circular coal roadway is established to analyze the distribution characteristics of stress and deformation energy density of surrounding rock of coal roadway, and then the rock burst prediction model of coal roadway is established to predict the rock burst disaster of coal roadway. The results show that the tangential stress and deformation energy density of the surrounding rock of elastic-brittle coal roadway jump at the interface between the elastic zone and the failure zone. The damage degree of the strength and in-situ stress of coal increase, and the radius of failure area also increases. As a result, the jump height of the tangential stress and deformation energy density of the surrounding rock of the coal roadway increases. The tangential stress jumping provides a force for the instability and failure of coal roadway, and the deformation energy density jumping provides an energy for the rock burst. The higher the tangential stress and deformation energy density jump, the easier the instability and rock burst of coal become. Based on the jumping of tangential stress and deformation energy density, the analytical prediction model of rock burst in coal roadway is established, and the prediction results are consistent with the actual situation of rock burst in the field, thus providing a new method for predicting rock burst in brittle coal roadway.

Key words: rock burst, coal roadway, prediction model, perfectly elastic-brittle behavior, tangential stress jumping, deformation energy density jumping

CLC Number: 

  • U451
[1] ZHANG Jin-liang, YANG Feng-wei, CAO Zhi-guo, SU Wei-lin, . Experimental study on ultra-high pressure water jet rock-breaking at high linear speed [J]. Rock and Soil Mechanics, 2023, 44(3): 615-623.
[2] LUO Dan-ni, LU Si-hang, SU Guo-shao, TAO Hong-hui, . Experimental study on rock burst of granite with prefabricated single crack under true-triaxial stress condition with a free face [J]. Rock and Soil Mechanics, 2023, 44(1): 75-87.
[3] JIN Jia-xu, ZHU Lei, LIU Lei, CHEN Yi-jun, YAO Yuan, GAO Teng-fei, LI Ruo-xin, . Gas pressure monitoring test and prediction model of single well aeration in landfill [J]. Rock and Soil Mechanics, 2023, 44(1): 259-267.
[4] CHEN Guang-bo, ZHANG Jun-wen, HE Yong-liang, ZHANG Guo-hua, LI Tan, . Derivation of pre-peak energy distribution formula and energy accumulation tests of coal-rock combined body [J]. Rock and Soil Mechanics, 2022, 43(S2): 130-143.
[5] CHEN Rui, ZHANG Xing, HAO Ruo-yu, BAO Wei-xing. Shear strength deterioration of geopolymer stabilized loess under wet-dry cycles: mechanisms and prediction model [J]. Rock and Soil Mechanics, 2022, 43(5): 1164-1174.
[6] ZHANG Wen-gang, GU Xin, LIU Han-long, ZHANG Qing, WANG Lin, WANG Lu-qi, . Probabilistic back analysis of soil parameters and displacement prediction of unsaturated slopes using Bayesian updating [J]. Rock and Soil Mechanics, 2022, 43(4): 1112-1122.
[7] WANG Hai-man, NI Wan-kui. Prediction model of saturated/unsaturated permeability coefficient of compacted loess with different dry densities [J]. Rock and Soil Mechanics, 2022, 43(3): 729-736.
[8] YANG Ke, LIU Wen-jie, MA Yan-kun, XU Ri-jie, CHI Xiao-lou, . Experimental study of impact failure characteristics of coal-rock combination bodies under true triaxial loading and single face unloading [J]. Rock and Soil Mechanics, 2022, 43(1): 15-27.
[9] JIANG Shuai, ZHU Yong, LI Qing, ZHOU Hui, TU Hong-liang, YANG Fan-jie, . Dynamic prediction and influence factors analysis of ground surface settlement during tunnel excavation [J]. Rock and Soil Mechanics, 2022, 43(1): 195-204.
[10] WU Zhen-hua, PAN Peng-zhi, PAN Jun-feng, WANG Zhao-feng, GAO Jia-ming, . Analysis of mechanism of rock burst and law of mining induced events in graben structural area [J]. Rock and Soil Mechanics, 2021, 42(8): 2225-2238.
[11] WANG Ai-wen, GAO Qian-shu, PAN Yi-shan, . Experimental study of rock burst prevention mechanism of bursting liability reduction-deformation control-energy dissipation based on drillhole in coal seam [J]. Rock and Soil Mechanics, 2021, 42(5): 1230-1244.
[12] LI Ya-feng, NIE Ru-song, LI Yuan-jun, LENG Wu-ming, RUAN Bo. Cumulative plastic deformation of subgrade fine-grained soil under intermittent cyclic loading and its prediction model [J]. Rock and Soil Mechanics, 2021, 42(4): 1065-1077.
[13] YAN Chang-bin, WANG He-jian, YANG Ji-hua, CHEN Kui, ZHOU Jian-jun, GUO Wei-xin, . Predicting TBM penetration rate with the coupled model of partial least squares regression and deep neural network [J]. Rock and Soil Mechanics, 2021, 42(2): 519-528.
[14] ZHANG Xiao-jun, LI Xiao-cheng, LIU Guo-lei, LI Bao-yu, . Experimental study on the effect of local risk reduction of pressure relief hole for splitting [J]. Rock and Soil Mechanics, 2020, 41(S1): 171-178.
[15] YANG Zhi-hao, YUE Zu-run, FENG Huai-ping, YE Chao-liang, MA De-liang, . Large scale triaxial tests on graded macadam filling and its accumulated plastic strain prediction model [J]. Rock and Soil Mechanics, 2020, 41(9): 2993-3002.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIA Dong-zhou,HE Yi-bin,LIU Jian-hua. Analysis of aseismic capability and influential factors for rigid pile composite foundation-superstructure dynamic interaction system[J]. , 2009, 30(11): 3505 -3511 .
[2] ZHEN Wen-zhan,SUN De-an,DUAN Bo. Analysis of strain localization in overconsolidated clay specimens along different stress paths[J]. , 2011, 32(1): 293 -298 .
[3] WU Kai,SHENG Qian,MEI Song-hua,LI Jia. A model of PSO-LSSVM and its application to displacement back analysis[J]. , 2009, 30(4): 1109 -1114 .
[4] LIU Zhen, ZHOU Cui-ying, ZHU Feng-xian, ZHANG Lei. Critical criterion for microstructure evolution of soft rocks in softening process[J]. , 2011, 32(3): 661 -666 .
[5] LUO Yao-wu,HU Qi,LING Dao-sheng,CHEN Zheng,CHEN Yun-min. Model experimental research on effects of properties of interface between piles and sand on bearing behavior of uplift piles in sand[J]. , 2011, 32(3): 722 -726 .
[6] SUN Bing,ZENG Sheng,DING De-xin,QI Chun-ming,YU Qing. Research on transmit rules of stress wave with low strain in dynamic test pile and anchorage bolt[J]. , 2011, 32(4): 1143 -1148 .
[7] CHEN Zhen-hua , LI Ling-ling , WANG Li-zhong , XU Yan , YANG Yi. Analysis and material selection of reinforced geosynthetics in sea dike project[J]. , 2011, 32(6): 1824 -1830 .
[8] YAN Geng-sheng, ZHANG Hu-yuan, WANG Xiao-dong, YANG Bo, LI Min. Durability of earthen architecture ruins under cyclic freezing and thawing[J]. , 2011, 32(8): 2267 -2273 .
[9] ZHANG Bo , LI Shu-cai , ZHANG Dun-fu , LI Ming-tian , SHAO Dong-liang. Study of stress fields of simple harmonic wave propagation in viscoelastic media[J]. , 2011, 32(8): 2429 -2434 .
[10] GUO Xiao-hong , CHEN Fei-fei , CHU Yi-dun, QIAO Chun-jiang . Research on support techniques for tunnel in watery and weak stratum[J]. , 2011, 32(S2): 449 -454 .