Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (8): 2225-2238.doi: 10.16285/j.rsm.2020.1732

• Geotechnical Engineering • Previous Articles     Next Articles

Analysis of mechanism of rock burst and law of mining induced events in graben structural area

WU Zhen-hua1, 2, PAN Peng-zhi1, 2, PAN Jun-feng3, WANG Zhao-feng1, 2, GAO Jia-ming3   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. CCTEG Coal Mining Research Institute, Beijing 100013, China
  • Received:2020-10-10 Revised:2021-03-13 Online:2021-08-11 Published:2021-08-16
  • Supported by:
    This work was supported by the National Key R&D Program of China (2017YFC0804203).

Abstract: Aiming at the disaster of rock burst in graben structural area of coal mine, based on the particularity of graben structure and the occurrence characteristics of overburden rock, the movement characteristics of overburden and stress evolution law of coal and rock mass in the graben structural region are analyzed and the corresponding mechanical model is established by means of field investigation, theoretical analysis and numerical simulation. The mechanism of rock burst in the graben structural region is consequently studied. At the same time, the evolution characteristics of microseismic energy and frequency before and after rock burst are analyzed, and the time sequence of microseismic precursory information of rock burst in graben structural region is obtained. The results show that: the sliding subsidence of wedge is closely related to the width of goaf. The existence of goaf in graben structural area will break the stable state of wedge and lead to more severe stability conditions. The local slip and dislocation of FD6 and FD8 faults lead to wedge sliding subsidence, and the hanging roof structure of graben structural area also has corresponding extrusion effect on the undeveloped coal mass. The same action provides high static stress conditions for the occurrence of rock burst, and the breaking of suspended roof structure provides dynamic load disturbance conditions for the occurrence of rock burst. The joint action of static load and dynamic load results in the upper drift and triple entry in the graben structure. The energy and frequency of microseismic show obvious deviation before the impact, and the daily average energy of microseismic is measured. There are obvious sudden drop and sudden rise. The anti-scour technology of “chain-brokening and consumption-increasing” is proposed based on the analysis results and field practice. It provides some theoretical reference value for occurrence mechanism, early warning and prevention and control of rock burst on working face in graben structural area.

Key words: graben structure, rock burst, mechanical model, microseismic, chain-brokening and consumption-increasing

CLC Number: 

  • TU 456
[1] XIA Xin, JIANG Yuan-jun, SU Li-jun, MEHTAB Alam, LI Jia-jia, . Estimation model of limit values of shear strength of root-bearing soil based on interface bonding [J]. Rock and Soil Mechanics, 2021, 42(8): 2173-2184.
[2] ZHU Chun, HE Man-chao, ZHANG Xiao-hu, TAO Zhi-gang, YIN Qian, LI Li-feng, . Nonlinear mechanical model of constant resistance and large deformation bolt and influence parameters analysis of constant resistance behavior [J]. Rock and Soil Mechanics, 2021, 42(7): 1911-1924.
[3] WANG Ai-wen, GAO Qian-shu, PAN Yi-shan, . Experimental study of rock burst prevention mechanism of bursting liability reduction-deformation control-energy dissipation based on drillhole in coal seam [J]. Rock and Soil Mechanics, 2021, 42(5): 1230-1244.
[4] LIU Yin-chi, LI Shu-lin, TANG Chao. Improvement and application of focal mechanism solution type criterion for rock mass fracture [J]. Rock and Soil Mechanics, 2021, 42(5): 1335-1344.
[5] ZHANG Xiao-jun, LI Xiao-cheng, LIU Guo-lei, LI Bao-yu, . Experimental study on the effect of local risk reduction of pressure relief hole for splitting [J]. Rock and Soil Mechanics, 2020, 41(S1): 171-178.
[6] CHEN Bing-rui, FENG Xia-ting, FU Qi-qing, WANG Bo, ZHU Xin-hao, LI Tao, LU Cai-ping, XIA Huan, . Integration and high precision intelligence microseismic monitoring technology and its application in deep rock engineering [J]. Rock and Soil Mechanics, 2020, 41(7): 2422-2431.
[7] MAO Hao-yu, XU Nu-wen, LI Biao, FAN Yi-lin, WU Jia-yao, MENG Guo-tao, . Stability analysis of an underground powerhouse on the left bank of the Baihetan hydropower station based on discrete element simulation and microseismic monitoring [J]. Rock and Soil Mechanics, 2020, 41(7): 2470-2484.
[8] CHEN Guang-bo, QIN Zhong-cheng, ZHAN Guo-hua, LI Tan, LI Jing-kai, . Law of energy distribution before failure of a loaded coal-rock combined body [J]. Rock and Soil Mechanics, 2020, 41(6): 2021-2033.
[9] SUN De-an, XUE Yao, WANG Lei, . Analysis of one-dimensional thermal consolidation of saturated soil considering heat conduction of semi-permeable drainage boundary under varying loading [J]. Rock and Soil Mechanics, 2020, 41(5): 1465-1473.
[10] WANG Kai-xing, DOU Lin-ming, PAN Yi-shan, OPARIN V N . Experimental study of incompatible dynamic response feature of block rock mass [J]. Rock and Soil Mechanics, 2020, 41(4): 1227-1234.
[11] LU Wei, ZHAO Dong, LI Dong-bo, MAO Xiao-fei. Analytical method for dynamic response of fully grouted anchorage system of rammed earth sites [J]. Rock and Soil Mechanics, 2020, 41(4): 1377-1387.
[12] CHOU Ya-ling, HUANG Shou-yang, SUN Li-yuan, WANG Li-jie, YUE Guo-dong, CAO Wei, SHENG Yu, . Mechanical model of chlorine salinized soil-steel block interface based on freezing and thawing [J]. Rock and Soil Mechanics, 2019, 40(S1): 41-52.
[13] CHEN Bing-rui, WU Hao, CHI Xiu-wen, LIU Hui, WU Meng-die, YAN Jun-wei, . Real-time recognition algorithm for microseismic signals of rock failure based on STA/LTA and its engineering application [J]. Rock and Soil Mechanics, 2019, 40(9): 3689-3696.
[14] LI Tong, FENG Xia-ting, WANG Rui, XIAO Ya-xun, WANG Yong, FENG Guang-liang, YAO Zhi-bin, NIU Wen-jing, . Characteristics of rockburst location deflection and its microseismic activities in a deep tunnel [J]. Rock and Soil Mechanics, 2019, 40(7): 2847-2854.
[15] ZHAO Zhen-hua, ZHANG Xiao-jun, LI Xiao-cheng, . Experimental study of stress relaxation characteristics of hard rocks with pressure relief hole [J]. Rock and Soil Mechanics, 2019, 40(6): 2192-2199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .