Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (4): 1377-1387.doi: 10.16285/j.rsm.2019.0576

• Geotechnical Engineering • Previous Articles     Next Articles

Analytical method for dynamic response of fully grouted anchorage system of rammed earth sites

LU Wei1, 2, ZHAO Dong1, LI Dong-bo1, 2, MAO Xiao-fei1   

  1. 1. School of Science, Xi’an University of Architecture & Technology, Xi’an, Shaanxi 710055, China; 2. State Key Laboratory of Green Building in Western China, Xi’an University of Architecture & Technology, Xi’an, Shaanxi 710055, China
  • Received:2019-03-26 Revised:2019-08-21 Online:2020-04-11 Published:2020-07-01
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51878547), the China Postdoctoral Science Foundation (2018M633478), the Opening Fund of State Key Laboratory of Green Building in Western China (LSKF202010) and the Basic Research Program of Natural Science in Shaanxi Province (2020JQ-671).

Abstract: A simplified mechanical model of dangerous soil mass-anchor bolt-stabilized soil mass anchorage system is established against the background of instability of rammed earth sites caused by wide vertical cracks. In this model, friction between the anchor bolt and the soil mass is simplified into a parallel mechanism of a linear spring together with a speed-related damper, and the connect effect of anchor bolt in crack section is simplified as a linear spring. Dynamic equilibrium equations for the anchoring system are established based on the theory of elastodynamics, and analytic solutions of dynamic response of bolt axial forces and displacement are deduced. Finally, the analytic method proposed by this paper is applied to the anchorage engineering of the southern wall of the Gaochang Ancient City in Xinjiang to analyze the axial force response characteristics and distribution law of the anchor bolt. The rationality of the procedure is verified by numerical analysis. The results show that the axial force response of the anchor bolt at the same position under dynamic action fluctuates around the static equilibrium position, the position of the maximum axial force is near the crack and gradually decreases exponentially toward the free end and the anchor end. And after considering the amplification effect of the seismic acceleration along the height of the site, a more accurate axial force response of anchor bolt can be obtained.

Key words: rammed earth sites, wholly grouted anchor bolt, anchorage system, simplified mechanical model, dynamic response

CLC Number: 

  • TU 361
[1] LI Fu-xiu, WU Zhi-jian, YAN Wu-jian, ZHAO Duo-yin, . Research on dynamic response characteristics of loess tableland slopes based on shaking table test [J]. Rock and Soil Mechanics, 2020, 41(9): 2880-2890.
[2] ZHUANG Yan, LI Shao-bang, CUI Xiao-yan, DONG Xiao-qiang, WANG Kang-yu, . Investigation on dynamic response of subgrade and soil arching effect in piled embankment under high-speed railway loading [J]. Rock and Soil Mechanics, 2020, 41(9): 3119-3130.
[3] QIAO Xiang-jin, LIANG Qing-guo, CAO Xiao-ping, WANG Li-li, . Research on dynamic responses of the portal in bridge-tunnel connected system [J]. Rock and Soil Mechanics, 2020, 41(7): 2342-2348.
[4] HE Jing-bin, FENG Zhong-ju, DONG Yun-xiu, HU Hai-bo, LIU Chuang, GUO Sui-zhu, ZHANG Cong, WU Min, WANG Zhen, . Dynamic response of pile foundation under pile-soil-fault coupling effect in meizoseismal area [J]. Rock and Soil Mechanics, 2020, 41(7): 2389-2400.
[5] REN Yang, LI Tian-bin, LAI Lin. Centrifugal shaking table test on dynamic response characteristics of tunnel entrance slope in strong earthquake area [J]. Rock and Soil Mechanics, 2020, 41(5): 1605-1612.
[6] WANG Li-an, ZHAO Jian-chang, HOU Xiao-qiang, LIU Sheng-wei, WANG Zuo-wei. Lamb problem for non-homogeneous saturated half-space [J]. Rock and Soil Mechanics, 2020, 41(5): 1790-1798.
[7] FENG Li, DING Xuan-ming, WANG Cheng-long, CHEN Zhi-xiong. Shaking table model test on seismic responses of utility tunnel with joint [J]. Rock and Soil Mechanics, 2020, 41(4): 1295-1304.
[8] ZHANG Heng-yuan, QIAN De-ling, SHEN Chao, DAI Qi-quan. Experimental investigation on dynamic response of pile group foundation on liquefiable ground subjected to horizontal and vertical earthquake excitations [J]. Rock and Soil Mechanics, 2020, 41(3): 905-914.
[9] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
[10] CHEN Shi-hai, GONG Jia-chen, HU Shuai-wei, . Model test study on dynamic response characteristics of host rockmass and supporting bolt under blasting load [J]. Rock and Soil Mechanics, 2020, 41(12): 3910-3918.
[11] QU Chang-zi, KANG Kai, WEI Li-min, GUO Kun, HE Qun, WANG Yong-he, . Dynamic response characteristics and long-term dynamic stability of subgrade-culvert transition zone in high-speed railway [J]. Rock and Soil Mechanics, 2020, 41(10): 3432-3242.
[12] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[13] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[14] YANG Wen-bo, ZOU Tao, TU Jiu-lin, GU Xiao-xu, LIU Yu-chen, YAN Qi-xiang, HE Chuan. Analysis of dynamic response of horseshoe cross-section tunnel under vibrating load induced by high-speed train [J]. Rock and Soil Mechanics, 2019, 40(9): 3635-3644.
[15] LU Jun-long, ZHANG Yin, . Experimental study of the seismic response of the assembled multi-ribbed wall structure-subsoil system in frequency domain [J]. Rock and Soil Mechanics, 2019, 40(6): 2163-2171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[2] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[3] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[4] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[5] ZHU Ze-qi, SHENG Qian, MEI Song-hua, ZHANG Zhan-rong. Improved ubiquitous-joint model and its application to underground engineering in layered rock masses[J]. , 2009, 30(10): 3115 -3121 .
[6] ZHOU Xiao-jie, JIE Yu-xin, LI Guang-xin. Numerical simulation of piping based on coupling seepage and pipe flow[J]. , 2009, 30(10): 3154 -3158 .
[7] WU Chang-yu, ZHANG Wei, LI Si-shen, ZHU Guo-sheng. Research on mechanical clogging mechanism of releaf well and its control method[J]. , 2009, 30(10): 3181 -3187 .
[8] CUI Hao-dong, ZHU Yue-ming. Back analysis of seepage field of Ertan high arch dam foundation[J]. , 2009, 30(10): 3194 -3199 .
[9] WANG Gang, JIANG Yu-jing, WANG Wei-ming, LI Ting-chun. Development and application of an improved numeric control shear-fluild coupled apparatus for rock joint[J]. , 2009, 30(10): 3200 -3209 .
[10] YANG You-lian,ZHU Jun-gao,YU Ting,WU Xiao-ming. Experimental study of mechanical behaviour of soil-structure interface by ring shear test[J]. , 2009, 30(11): 3256 -3260 .