Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (4): 1366-1376.doi: 10.16285/j.rsm.2019-0482

• Geotechnical Engineering • Previous Articles     Next Articles

Influence of shield pitch angle variation on shield-soil interaction

SHEN Xiang1, 2, 3, YUAN Da-jun1, 2, 3   

  1. 1. Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China; 2. Tunnel and Underground Engineering Research Center of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China; 3. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
  • Received:2019-03-11 Revised:2019-05-20 Online:2020-04-11 Published:2020-07-01
  • Supported by:
    This work was supported by the Fundamental Research Funds for the Central Universities of China (2017YJS151) and the National Program on Key Basic Research Preject of China (973Program) (2015CB057802).

Abstract: Shield-soil interaction is a complex multiphase coupling problem during the change of shield attitude. According to the critical attitude parameter of the shield pitch angle, based on the ground reaction curve, the shield-soil interaction relationship is simplified by using an equivalent soil spring, and a shield-soil interaction model is established. The initial boundary problem of shield-soil interaction is solved by the improved method of the loosening earth pressure of Terzaghi's theory. A theoretical calculation method of shield pitch angle is further obtained. Moreover, the effects of the vertical coefficient of subgrade reaction and upper-soft lower-hard ground on shield-soil interaction are analyzed and discussed. The results show that the upper-soft lower-hard ground is unfavorable to the control of the shield attitude, and the requirements for shield attitude control become high. Finally, the measured data of the pitch angle of the R2 line shield tunnel project of Jinan Metro are compared and analyzed. The results show that the deflection moment applied by the jacks cannot fully act on the shield, resulting in the measured values are generally slightly smaller than the theoretical value. The theoretical calculation method of shield pitch angle can provide theoretical guidance for shield attitude control.

Key words: shield, pitch angle, shield attitude, interaction

CLC Number: 

  • TU 443
[1] YE Zhi-gang, WANG Lu-jun, ZHU Bin, HUANG Jia-sheng, XU Wen-jie, CHEN Yun-min, . Numerical study on heated pipe-saturated soil foundation interaction considering thermo-osmosis effect [J]. Rock and Soil Mechanics, 2021, 42(3): 691-699.
[2] WU Ben, LIU Wei, SHI Pei-xin, FU Chun-qing, . Two-dimensional spiral failure model of the heading face of shield tunneling [J]. Rock and Soil Mechanics, 2021, 42(3): 767-774.
[3] DENG Hua-feng, FANG Jing-cheng, LI Jian-lin, LI Guan-ye, QI Yu, XU Xiao-liang. Damage evolution of dynamic characteristics of sandstone under the sequential action of water-rock interaction and cyclic loading and unloading [J]. Rock and Soil Mechanics, 2021, 42(2): 343-351.
[4] DAI Xuan, GUO Wang, CHENG Xue-song, HUO Hai-feng, LIU Guo-guang, . Field measurement and numerical analysis for evaluating longitudinal settlement induced by shield tunneling parallel to building [J]. Rock and Soil Mechanics, 2021, 42(1): 233-244.
[5] ZHU Cai-hui, LAN Kai-jiang, DUAN Yu, HE Hong. The control technology of air shaft cross passage construction in Xi’an subway with "tunnel first then well" method [J]. Rock and Soil Mechanics, 2020, 41(S1): 379-386.
[6] HUANG Zhi-gang, ZUO Qing-jun, WU Li, CHEN Fu-bang, HU Sheng-song, ZHU Sheng, . Nonlinear softening mechanism of argillaceous slate under water-rock interaction [J]. Rock and Soil Mechanics, 2020, 41(9): 2931-2942.
[7] WAN Jian-hong, ZHENG Xiang-zhi, OUYANG Wei-hang, LIU Si-wei, LI Xue-you. Stability analysis of single pile base on efficient finite-element method [J]. Rock and Soil Mechanics, 2020, 41(8): 2805-2813.
[8] TAN Yun-zhi, HU Yan, CAO Ling, DENG Yong-feng, MING Hua-jun, SHEN Ke-jun, . Mechanism of metakaolin and lime modification of water sensitivity for compacted laterite [J]. Rock and Soil Mechanics, 2020, 41(7): 2207-2214.
[9] ZHANG Xiao-ling, ZHU Dong-zhi, XU Cheng-shun, DU Xiu-li, . Research on p-y curves of soil-pile interaction in saturated sand foundation in weakened state [J]. Rock and Soil Mechanics, 2020, 41(7): 2252-2260.
[10] ZHANG Lei, HAI Wei-shen, GAN Hao, CAO Wei-ping, WANG Tie-hang, . Study on bearing behavior of flexible single pile subject to horizontal and uplift combined load [J]. Rock and Soil Mechanics, 2020, 41(7): 2261-2270.
[11] MAO Jia-hua, YUAN Da-jun, YANG Jiang-xiao, ZHANG Bing, . A theoretical study of porosity characteristics on the excavation face of slurry shield in sand stratum [J]. Rock and Soil Mechanics, 2020, 41(7): 2283-2292.
[12] PAN Dan-guang, CHENG Ye, CHEN Qing-jun. Shaking table test of the effect of underground shopping mall structure on ground motion [J]. Rock and Soil Mechanics, 2020, 41(4): 1134-1145.
[13] HOU Xiao-ping, CHEN Sheng-hong. Simulation of variably-saturated flow in fractured porous media using composite element method [J]. Rock and Soil Mechanics, 2020, 41(4): 1437-1446.
[14] MI Bo, XIANG Yan-yong, . Model experiment and calculation analysis of excavation-seepage stability for shallow shield tunneling in sandy ground [J]. Rock and Soil Mechanics, 2020, 41(3): 837-848.
[15] ZHANG Heng-yuan, QIAN De-ling, SHEN Chao, DAI Qi-quan. Experimental investigation on dynamic response of pile group foundation on liquefiable ground subjected to horizontal and vertical earthquake excitations [J]. Rock and Soil Mechanics, 2020, 41(3): 905-914.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[3] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[4] CHEN Zhen, TAO Long-guang, LI Tao, LI Hai-bin, WANG Zong-yong. A new method for settlement computation of box foundation with supporting structure[J]. , 2009, 30(10): 2978 -2984 .
[5] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[6] GUO Jun-hui, CHEN Wei-guo, ZHANG Bin. Research on creep property of geogrids at a low temperature[J]. , 2009, 30(10): 3009 -3012 .
[7] LIU Zhen-ping, HE Huai-jian, LI Qiang, ZHU Fa-hua. Study of the technology of 3D modeling and visualization system based on Python[J]. , 2009, 30(10): 3037 -3042 .
[8] LIU Bin, LI Shu-cai, LI Shu-chen, ZHONG Shi-hang. Study of advanced detection of water-bearing geological structures with DC resistivity method[J]. , 2009, 30(10): 3093 -3101 .
[9] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[10] ZHOU Xiao-jie, JIE Yu-xin, LI Guang-xin. Numerical simulation of piping based on coupling seepage and pipe flow[J]. , 2009, 30(10): 3154 -3158 .