Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (5): 1164-1174.doi: 10.16285/j.rsm.2021.1355

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Shear strength deterioration of geopolymer stabilized loess under wet-dry cycles: mechanisms and prediction model

CHEN Rui, ZHANG Xing, HAO Ruo-yu, BAO Wei-xing   

  1. School of Highway, Chang’an University, Xi’an, Shaanxi 710064, China
  • Received:2021-08-16 Revised:2021-10-22 Online:2022-05-11 Published:2022-04-30
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51708041), the Natural Science Foundation of Shaanxi Province (2018JQ5001) and the Fundamental Research Funds for the Central Universities, Chang’an University (300102210213).

Abstract: The loess was stabilized using geopolymer (GP). Triaxial compression tests were conducted on stabilized loess with varied GP contents subjected to wet-dry cycles. The degradation law of the shear strength of the stabilized loess after varied wet-dry cycles was evaluated and an empirical model for predicting the shear strength was proposed. The chemical composition of the hydration products, the microstructure and pore size distribution of stabilized loess were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) tests. The degradation mechanisms of GP stabilized loess under wet-dry cycles were discussed based on the experimental results. The experimental results show that compared with untreated soil, the shear strength of stabilized soils is significantly improved with the increasing GP content, i.e. the cohesion and internal friction angle increase by 260% and 43%, respectively. The shear strength of stabilized loess decreases with the increasing ratio of porosity to GP volumetric fraction ( ) in a power function. It indicates that GP stabilization can remarkably improve the durability of loess under wet-dry cycles. The stabilized loess with 10% and 15% GP can maintain over 75% of their original shear strength, but those with 5% GP shows evident deterioration in shear strength after nine wet-dry cycles. The wet-dry cycling has greater impact on the degradation of peak deviatoric stress and cohesion than that of internal friction angle. An empirical model was proposed and validated for predicting the degradation in shear strength of the GP stabilized loess under wet-dry cycles, considering influence of the GP content, confining pressure and the number of wet-dry cycle. The experimental results of XRD, SEM and MIP show that the main hydration products of GP are calcium silicate hydrate (CSH) and calcium aluminosilicate hydrate (CASH), which fill the soil pores and enhance the bonding between soil particles. Due to this reason, a denser microstructure develops and the cohesion of the stabilized loess increases, which consequently improves the shear strength of the GP stabilized loesses. Moreover, the wet-dry cycle results in the expansion of soil pores and the formation of new fissures, which destructs the bonding between soil particles and reduces the shear strength of the stabilized loess.

Key words: loess, geopolymer, wet-dry cycle, shear strength deterioration, stabilizing mechanism, prediction model

CLC Number: 

  • TU 416.1
[1] KANG Xiao-sen, LIAO Hong-jian, HUANG Qiang-bing, HUO Bing-yao, . Spacing ratio of structural loess and its prediction using bounding surface plasticity model [J]. Rock and Soil Mechanics, 2022, 43(6): 1469-1480.
[2] ZHANG Wen-gang, GU Xin, LIU Han-long, ZHANG Qing, WANG Lin, WANG Lu-qi, . Probabilistic back analysis of soil parameters and displacement prediction of unsaturated slopes using Bayesian updating [J]. Rock and Soil Mechanics, 2022, 43(4): 1112-1122.
[3] WANG Hai-man, NI Wan-kui. Prediction model of saturated/unsaturated permeability coefficient of compacted loess with different dry densities [J]. Rock and Soil Mechanics, 2022, 43(3): 729-736.
[4] HOU Le-le, WENG Xiao-lin, LI Lin, ZHOU Rong-ming, . A critical state model for structural loess considering water content [J]. Rock and Soil Mechanics, 2022, 43(3): 737-748.
[5] GAO Chang-hui, DU Guang-yin, LIU Song-yu, ZHUANG Zhong-xun, YANG Yong, HE Huan, . Influence of deep vibratory compaction on the horizontal stress change of collapsible loess [J]. Rock and Soil Mechanics, 2022, 43(2): 519-527.
[6] XU Jian, WU Zhi-peng, CHEN Hui, . Triaxial shear behavior of basalt fiber reinforced loess under drying-wetting cycles [J]. Rock and Soil Mechanics, 2022, 43(1): 28-36.
[7] JIANG Shuai, ZHU Yong, LI Qing, ZHOU Hui, TU Hong-liang, YANG Fan-jie, . Dynamic prediction and influence factors analysis of ground surface settlement during tunnel excavation [J]. Rock and Soil Mechanics, 2022, 43(1): 195-204.
[8] LI Yan, LI Tong-lu, HOU Xiao-kun, LI Hua, ZHANG Jie, . Prediction of unsaturated permeability curve of compaction loess with pore-size distribution curve and its application scope [J]. Rock and Soil Mechanics, 2021, 42(9): 2395-2404.
[9] GE Miao-miao, LI Ning, SHENG Dai-chao, ZHU Cai-hui, PINEDA Jubert, . Experimental investigation of microscopic deformation mechanism of unsaturated compacted loess under hydraulic coupling conditions [J]. Rock and Soil Mechanics, 2021, 42(9): 2437-2448.
[10] ZHAO Zhi-qiang, DAI Fu-chu, MIN Hong, TAN Ye, . Research on infiltration process in undisturbed loess-paleosol sequence [J]. Rock and Soil Mechanics, 2021, 42(9): 2611-2621.
[11] ZHOU Heng-yu, WANG Xiu-shan, HU Xing-xing, XIONG Zhi-qi, ZHANG Xiao-yuan, . Influencing factors and mechanism analysis of strength development of geopolymer stabilized sludge [J]. Rock and Soil Mechanics, 2021, 42(8): 2089-2098.
[12] JIANG Tong, ZHAI Tian-ya, ZHANG Jun-ran, ZHAO Jin-di, WANG Li-jin, SONG Chen-yu, PAN Xu-wei. Diametric splitting tests on loess based on particle image velocimetry technique [J]. Rock and Soil Mechanics, 2021, 42(8): 2120-2126.
[13] LI Ya-feng, NIE Ru-song, LI Yuan-jun, LENG Wu-ming, RUAN Bo. Cumulative plastic deformation of subgrade fine-grained soil under intermittent cyclic loading and its prediction model [J]. Rock and Soil Mechanics, 2021, 42(4): 1065-1077.
[14] WU Jun, ZHENG Xi-yao, YANG Ai-wu, LI Yan-bo. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer [J]. Rock and Soil Mechanics, 2021, 42(3): 647-655.
[15] XIONG Zhong-ming, LÜ Shi-hong, LI Yun-liang, ZHAO Qi-feng, LI Jin, TAN Shu-shun, ZHANG Xiang-rong, ZHU Yu-rong, JIANG Lei, YANG Qi-fan, ZHANG Ning-bo, ZHANG Zi-dong. Research on dynamic properties and energy dissipation of loess under passive confining pressure conditions [J]. Rock and Soil Mechanics, 2021, 42(3): 775-782.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .