Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (2): 489-501.doi: 10.16285/j.rsm.2023.0241

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Large-scale shaking table test on the seismic response of dip and anti-dip layered fractured structural slopes

WANG Tong1, 2, LIU Xian-feng1, 2, 3, YUAN Sheng-yang1, 2, JIANG Guan-lu1, 2, HU Jin-shan4, SHAO Zhu-jie4, TIAN Shi-jun4   

  1. 1. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2. Key Laboratory of High-speed Railway Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 3. School of Civil Engineering, Xinjiang Institute of Engineering, Urumqi, Xinjiang 830023, China; 4. China Railway First Survey and Design Institute Group Co., Ltd., Xi’an, Shaanxi 710043, China
  • Received:2023-02-27 Accepted:2023-04-23 Online:2024-02-11 Published:2024-02-07
  • Supported by:
    This work was supported by the Scientific Research Project of China Railway First Survey and Design Institute Group Co., Ltd. (20-06).

Abstract: In the challenging and perilous mountainous regions of Southwest China, there are numerous layered and fractured rock slopes with varying inclinations. These slopes are prone to disasters such as collapses and landslides during earthquakes, posing a serious threat to the ongoing construction of the Sichuan-Xizang Railway. To address this issue, large-scale shaking table model tests were conducted to study the dynamic response, failure modes of instability, and energy transfer characteristics of dip and anti-dip layered slopes under strong earthquake conditions. The test results reveal that the anti-seismic performance of anti-dip slopes is significantly better than that of dip slopes. The failure mode of dip slopes primarily involves tensile cracking, shearing, uplift, and slip failure. On the other hand, the failure mode of anti-dip slopes mainly consists of tensile, bending, tilting, and collapsing failure. The natural vibration frequency of anti-dip slopes is higher compared to dip slopes. As the earthquake magnitude increases, the natural frequency of dip slopes gradually decreases. However, the natural frequency of anti-dip slopes exhibits repeated oscillations within the range of seismic amplitudes of from 0.4g to 0.7g. Dip slopes exhibit clear “elevation amplification effect” and “tend-surface effect,” while anti-dip slopes demonstrate the “elevation amplification effect.” Furthermore, the internal acceleration response is greater than that of the slope surface. Marginal spectrum identification indicates that the most significant change in peak of marginal spectrum amplitude (PMSA) for dip slopes occurs at the upper part of the slope waist. This suggests that the energy loss of seismic waves near this position is the largest, indicating the formation of a sliding failure surface near the upper part of the slope waist. For anti-dip slopes, the PMSA decreases most significantly at the slope shoulder, indicating severe damage and a propensity for local collapse in this area. The analysis results are in good agreement with the experimental observations, providing further insights into the dynamic response and instability failure modes of different structural types of layered slopes under strong earthquakes. These findings serve as a basis for ensuring the safe construction of the Sichuan-Xizang Railway.

Key words: dip slope, anti-dip slope, shaking table test, peak ground acceleration (PGA) amplification coefficient, failure mode, damage identification

CLC Number: 

  • TU45
[1] FENG Hai-zhou, JIANG Guan-lu, HE Zi-lei, GUO Yu-feng, HU Jin-shan, LI Jie, YUAN Sheng-yang, . Dynamic response characteristics of tunnel portal slope reinforced by prestressed anchor sheet-pile wall [J]. Rock and Soil Mechanics, 2023, 44(S1): 50-62.
[2] WANG Zhi-ying, GUO Ming-zhu, ZENG Jin-yan, WANG Chen, LIU Huang. Experimental study on dynamic response of bedding rock slope with weak interlayer under earthquake [J]. Rock and Soil Mechanics, 2023, 44(9): 2566-2578.
[3] WANG Xiao-lei, LIU Li-teng, LIU Run, LIU Li-bo, DONG Lin, REN Hai. Shaking table test study on the influence of seismic history on liquefaction resistance of soils at different depths [J]. Rock and Soil Mechanics, 2023, 44(9): 2657-2666.
[4] LI Xiang, WANG Jing-tong, WEI Heng. Reliability analysis of rock tunnel stability based on interval non-probability under multiple failure modes [J]. Rock and Soil Mechanics, 2023, 44(8): 2409-2418.
[5] JIA Ke-min, XU Cheng-shun, DU Xiu-li, ZHANG Xiao-ling, SONG Ji, SU Zhuo-lin, . Mechanism of liquefaction-induced lateral spreading in liquefiable inclined sites [J]. Rock and Soil Mechanics, 2023, 44(6): 1837-1848.
[6] WANG Li-yan, JI Wen-wei, TAO Yun-xiang, TANG Yue, WANG Bing-hui, CAI Xiao-guang, ZHANG Lei, . Experimental study on seismic performances of geogrid striped-reinforced waste tire-faced retaining walls [J]. Rock and Soil Mechanics, 2023, 44(4): 931-940.
[7] WANG Wei, ZHANG Kuan, CAO Ya-jun, CHEN Chao, ZHU Qi-zhi, . Anisotropic mechanical properties and brittleness evaluation of layered phyllite [J]. Rock and Soil Mechanics, 2023, 44(4): 975-989.
[8] ZHANG Cong, FENG Zhong-ju, WANG Fu-chun, KONG Yuan-yuan, WANG Xi-qing, MA Xiao-qian, . Shaking table test of dynamic response of a single pile under different thicknesses of soft soil layers in a strong earthquake area [J]. Rock and Soil Mechanics, 2023, 44(4): 1100-1110.
[9] YAN Zhi-xiao, LI Yu-run, WANG Dong-sheng, WANG Yong-zhi, . Centrifugal experimental study on seismic response of bridge pile group foundation in overlaying water sandy field [J]. Rock and Soil Mechanics, 2023, 44(3): 861-872.
[10] LIN Hai, ZENG Yi-fan, ZHOU Chuang-bing, DONG Ping-xiao, SHI Jian-yong, . Experimental research on the shear characteristics of the composite liner consisting of wrinkled geomembrane and needle punched geosynthetic clay liner [J]. Rock and Soil Mechanics, 2023, 44(2): 355-361.
[11] XU Ming, YU Xiao-yue, ZHAO Yuan-ping, HU Jia-ju, ZHANG Xiao-ting. Analysis of seismic dynamic response and failure mode of bedding rock slope with laminated fractured structure [J]. Rock and Soil Mechanics, 2023, 44(2): 362-372.
[12] XIN Chun-lei, YANG Fei, FENG Wen-kai, LI Wen-hui, LIAO Jun. Shattering failure mechanism of step-like bedding rock slope under multi-stage earthquake excitations [J]. Rock and Soil Mechanics, 2023, 44(12): 3481-3494.
[13] HU Yao, LEI Hua-yang, LEI Zheng, LIU Ying-nan, . Shaking table test on seismic response of stacked tunnels under three-directional earthquake wave excitation [J]. Rock and Soil Mechanics, 2022, 43(S2): 104-116.
[14] LIU Si-hong, LI Bo-wen, LU Yang, SHEN Chao-min, FANG Bin-xin, HANG Dan, . Shaking table tests on liquefaction resistance performance of soilbag-stacked cushion [J]. Rock and Soil Mechanics, 2022, 43(S2): 183-192.
[15] DENG Peng-hai, LIU Quan-sheng, HUANG Xing, PAN Yu-cong, BO Yin, . Combined finite-discrete element numerical study on the buckling failure mechanism of horizontally layered soft rock mass [J]. Rock and Soil Mechanics, 2022, 43(S2): 508-523.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[2] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[3] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[4] HU Wei, HUANG Yi, LIU Zeng-rong. Testing and theoretical study of undrained shearing strength of saturated loess under cyclic loading[J]. , 2009, 30(10): 2996 -3000 .
[5] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[6] GUO Jun-hui, CHEN Wei-guo, ZHANG Bin. Research on creep property of geogrids at a low temperature[J]. , 2009, 30(10): 3009 -3012 .
[7] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[8] ZHAO Ming-hua, LIU Xiao-ping, HUANG Li-kui. Study of characteristics of seepage of roadbed’s fissures[J]. , 2009, 30(10): 3122 -3126 .
[9] ZHANG Jia-fa, DING Pei-zhong, ZHANG Wei, HU Zhi-jing. Studies of permeability and seepage deformation characteristics of cushion material for Shuibuya Concrete Faced Rockfill Dam[J]. , 2009, 30(10): 3145 -3150 .
[10] DING Pei-zhong, ZHOU Mi, ZHANG Wei. Experimental research on clogging of mat base of inside and outside liner of Yellow River-crossing tunnel by concrete construction[J]. , 2009, 30(10): 3159 -3162 .