›› 2009, Vol. 30 ›› Issue (10): 3043-3047.

• Geotechnical Engineering • Previous Articles     Next Articles

DCM-based on ground loss for response of group piles induced by tunneling

DU Zuo-long1, 2, HUANG Mao-song1, 2, LI Zao1, 2   

  1. 1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
  • Received:2008-09-12 Online:2009-10-10 Published:2009-12-23

Abstract:

In the analysis of pile response due to tunneling under two different displacement boundary conditions, a displacement controlled method (DCM) based on ground loss is used. The first stage, the transformation of soil displacement field around tunnel is introduced to simulate the process of actual tunneling. Then the second stage, free soil displacement field is loaded to group piles(2×2) to analyze the response(including settlement and force); the results from the presented approach by DCM are compared with ones from other papers; the good agreement is obtained.

Key words: two-stage method, DCM, group piles, finite elements

CLC Number: 

  • TU 473
[1] LIU Qing-bin, PAN Mao, LIU Jie, GUO Yan-jun, ZHANG Xiao-shuang, YAO Jian-peng, LI Fang-yu, . Paraview visualization and virtual reality of output of finite element analysis in Abaqus [J]. Rock and Soil Mechanics, 2019, 40(12): 4916-4924.
[2] WANG Zhong-jin, FANG Peng-fei, XIE Xin-yu, WANG Kui-hua, WANG Wen-jun, LI Jin-zhu, . Analysis of effected factors for vertical compressive bearing capacity of ribbed bamboo joint pile [J]. Rock and Soil Mechanics, 2018, 39(S2): 381-388.
[3] ZHENG An-xing, LUO Xian-qi,. An extended finite element method for modeling hydraulic fracturing in perilous rock [J]. , 2018, 39(9): 3461-3468.
[4] ZHOU Ze-lin, CHEN Shou-gen, TU Peng, ZHANG Hai-sheng, . Coupling method for analyzing the influence on existing tunnel due to adjacent foundations pit excavation [J]. , 2018, 39(4): 1440-1449.
[5] XIONG Hao, QIU Zhan-hong, WANG Xiao-gang . Directional interpolation infinite elements for elastic medium [J]. Rock and Soil Mechanics, 2018, 39(12): 4659-4664.
[6] WU Meng-xi, YU Ting, ZHANG Qi,. Finite element simulation of influence of deep overburden suffusion on dam stress and deformation [J]. , 2017, 38(7): 2087-2095.
[7] XIAO Yong-jie, CHEN Fu-quan, LIN Liang-qing. Study of ground vibration and vibration isolation due to sleeve of cast-in-place piles installed by vibratory driving [J]. , 2017, 38(3): 705-713.
[8] LIU Hong-jun, ZHANG Hao, LI Hong-jiang, YIN Yan-jing,. Finite element analysis of horizontal bearing capacity of umbrella suction anchor foundation in soft clay [J]. , 2017, 38(11): 3325-3331.
[9] YE Zu-yang, JIANG Qing-hui, LIU Yan-zhang, CHENG Ai-ping, . Numerical analysis of unsaturated seepage flow in discrete fracture networks of rock [J]. , 2017, 38(11): 3332-3340.
[10] ZHAO Ming-hua, LU Xing-ming, ZHANG Rui. Upper bound finite element method for ultimate bearing capacity and failure mechanism of subgrade above void [J]. , 2017, 38(1): 229-236.
[11] SONG Zi-heng, YANG Qiang, LIU Yao-ru. Elastoplastic model for geomaterial considering effect of pore water pressure and its finite elements implementation [J]. , 2016, 37(S1): 500-508.
[12] LI Dong-dong , XIAO Ming , CHEN Jun-tao , ZHAO Jian , . Finite element simulation and application of asphalt-coating bolts for rock-anchored beams in underground powerhouse [J]. , 2016, 37(S1): 616-624.
[13] SUN Cong ,LI Chun-guang ,ZHENG Hong ,SUN Guan-hua,. Upper bound limit analysis based on Taylor expansion form of element velocity [J]. , 2016, 37(4): 1153-1160.
[14] TIAN Dong-fang ,ZHENG Hong ,LIU De-fu,. 2D FEM numerical simulation of rainfall infiltration for landslide with considering runoff effect and its application [J]. , 2016, 37(4): 1179-1186.
[15] LI Chun-lin , MIAO Lin-chang,. Determination of the range of shield tunneling-induced soil disturbance [J]. , 2016, 37(3): 759-766.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[9] MA Kang, XU Jin, WU Sai-gang, ZHANG Ai-hui. Research on surrounding rock stability in local collapse section of highway tunnels[J]. , 2009, 30(10): 2955 -2960 .
[10] HUANG Run-qiu, XU De-min. Volume change method for testing rock or rock mass permeability[J]. , 2009, 30(10): 2961 -2964 .