›› 2010, Vol. 31 ›› Issue (1): 193-198.

• Geotechnical Engineering • Previous Articles     Next Articles

Study of dispersive identification and treatment with lime of dam soil in Majiushu Reservoir

FAN Heng-hui1, 2,KONG Ling-wei1,LI Hong-liang2,LU Xue-qing2,YIN Pei-jie2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. College of Water Conservancy and Architectural Engineering, Northwest A&F University, Yangling 712100, China
  • Received:2009-05-20 Online:2010-01-10 Published:2010-02-02

Abstract:

The water-retaining structures built of dispersive clay are so easily destroyed to occur the safety accidents. Considering the safety, the dispersivity and treatment with lime of soil for the Majiashu dam are studied using double-hydrometer test, pore water salts test, pinhole test, crumb test and exchangeable sodium percent test. The results are that the dam soil belongs in the low liquid limited clay; and it has a lot of sodium ions in the easily soluble salt and the saturation pore water; and its pH is the stronger alkalescence or even the strongest alkalescence. Those soil samples had more illite and a few of kaolinite and chlorite and montmorillonoid. The soil samples are transition clays and dispersive clays; and the lime is the effective additive when the content of lime is the 0.25 % with mass ratio the dispersive clay becomes to the non-dispersive clay. It is shown that the key reasons of dispersivity are that the soil of dam has the more sodium ions and the pH is the stronger alkalescence. The lime is the effective additive of the dispersive soil.

Key words: dispersive soil, physicochemical characters, tests of identification, dispersive mechanism, treatment

CLC Number: 

  • TU 411.2
[1] SHEN Tai-yu, WANG Shi-ji, XUE Le, LI Xian, HE Bing-hui, . An experimental study of sandy clayey purple soil enhanced through microbial-induced calcite precipitation [J]. Rock and Soil Mechanics, 2019, 40(8): 3115-3124.
[2] ZHU Yan-peng, DU Xiao-qi, YANG Xiao-hui, LI Hui-jun, . Research on utility tunnel foundation treated by compaction piles and post-work immersion test in self-weight collapsible loess area with large thickness [J]. Rock and Soil Mechanics, 2019, 40(8): 2914-2924.
[3] LIU Meng-shi, LUO Qiang, JIANG Liang-wei, LU Qing-yuan, LIANG Duo-wei, . Boundary pore characteristics and optimal treatment thickness in seepage test of coarse grained soil [J]. Rock and Soil Mechanics, 2019, 40(5): 1787-1796.
[4] ZENG Yan-jin, RONG Guan, PENG Jun, SHA Song, . Experimental study of crack propagation of marble after high temperature cycling [J]. , 2018, 39(S1): 220-226.
[5] ZHANG Fan, HU Wei, GUO Han-qun, HU Da-wei, SHENG Qian, SHAO Jian-fu,. Nanoindentation tests on granite after heat treatment [J]. , 2018, 39(S1): 235-243.
[6] YANG Zhong-min , GAO Yong-tao , WU Shun-chuan, CHENG Zi-qiao,. Optimization study of first liner replacement timing of large deformation tunnel based on convergence-constraint principle [J]. , 2018, 39(S1): 395-404.
[7] LI Xiao-fei, SUN Jiang-tao, CHEN Wei-zhong, YUAN Jing-qiang, LIU Jin-quan, ZHANG Qing-yan,. Strength and anti-washout property of fiber silica fume cement grout [J]. , 2018, 39(9): 3157-3163.
[8] SHI Xiang, FAN Heng-hui, LIU Gang, LI Pu, ZHANG Run-hong. An experimental study of creep properties of dispersive soil [J]. , 2017, 38(4): 1015-1022.
[9] YANG Zhao-zhong, ZHANG Yun-peng, JIA Min, LI Xiao-gang, WEI Zhuo, ZHANG Lu,. Experimental research on influence of low temperature on coal permeability [J]. , 2017, 38(2): 354-360.
[10] YUE Hao-miao, HUANG Jian-ming, WEN Tao, MI Hai-zhen,. Experimental study of foundation treatment of sulphate saline sandy soil using heavy cover replacement technique [J]. , 2017, 38(2): 471-478.
[11] HU Shao-hua ZHANG Guang ZHANG Miao JIANG Xiu-ling CHEN Yi-feng . Deformation characteristics tests and damage mechanics analysis of Beishan granite after thermal treatment [J]. , 2016, 37(12): 3427-3436.
[12] ZHAN Gao-feng, ZHANG Qun, ZHU Fu, DONG Wei-zhi. Research on influence of freeze-thaw cycles on static strength of lime-treated silty clay [J]. , 2015, 36(S2): 351-356.
[13] CUI Ming-juan, ZHENG Jun-jie, ZHANG Rong-jun, MIAO Chen-xi, ZHANG Jun-jie. Study of effect of chemical treatment on strength of bio-cemented sand [J]. , 2015, 36(S1): 392-396.
[14] JIANG Yan , YANG Guang-hua , HUANG Zhong-ming , QIAO You-liang , ZHANG Yu-cheng , . Ground treatment of high-rise buildings in complex karst region [J]. , 2015, 36(S1): 430-438.
[15] YAO Jian-ping , CAI De-gou , ZHU Jian , WANG Li-wei,. Research on post-grouting bored pile load-bearing characteristics [J]. , 2015, 36(S1): 513-517.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAN Xian-jun, CHEN Wei-zhong, YANG Jian-ping, YANG Chun-he. Study of THM-damage coupling model of gas storage in salt rock with interlayer[J]. , 2009, 30(12): 3633 -3641 .
[2] WEI Xing,WANG Gang,YU Zhi-ling. FEM of traffic-load-induced settlement of road on soft clay[J]. , 2010, 31(6): 2011 -2015 .
[3] WEN Shi-yi, LI Jing , SU Xia , YAO Xiong. Studies of mesomechanical structure characters of surrounding rock failure under complex stress state[J]. , 2010, 31(8): 2399 -2406 .
[4] MAO Ning,ZHANG Yao-liang. Typical examples of simple methods to find empirical formulas[J]. , 2010, 31(9): 2978 -2982 .
[5] LIU Jie,LI Jian-lin,QU Jian-jun,Cheng Xing,LI Jian-wu,LUO Shi-wei. Multiple factors analysis of influence of developing horizontal displacement at Dagangshan dam abutment slope based on unloading rock mass mechanics[J]. , 2010, 31(11): 3619 -3626 .
[6] LI Wei-hua, ZHAO Cheng-gang, DU Nan-xin. Analysis of effects of saturated soft interlayer on seismic responses of metro station[J]. , 2010, 31(12): 3958 -3963 .
[7] HAN Xian-min. Study of construction technology and mechanical effect of Guanjiao tunnel in shallow-buried sandy stratum in Xining-Golmud 2nd line[J]. , 2010, 31(S2): 297 -302 .
[8] JIANG Zheng-wei, PENG Jian-bing, WANG Qi-yao. Adverse geological problems and countermeasure of Xi’an Metro Line 3[J]. , 2010, 31(S2): 317 -321 .
[9] LIU Yong-hai, ZHU Xiang-rong, CHANG Lin-yue. Determining preconsolidation pressure by mathematic analysis based on casagrande method[J]. , 2009, 30(1): 211 -214 .
[10] LI Xing-gao, LIU Wei-ning. Discussion on computing water and earth pressures on retaining wall separately[J]. , 2009, 30(2): 419 -424 .