›› 2009, Vol. 30 ›› Issue (9): 2667-2673.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Static loading-unloading test of sand and stress release model

ZHUANG Li, ZHOU Shun-hua   

  1. Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
  • Received:2009-01-15 Online:2009-09-10 Published:2010-03-24

Abstract:

A series of small-scale model tests were carried out to measure stresses developed in testing quartz sand bed during loading and the corresponding variation during unloading in glass cylinder and steel rectangular box. A new conceptual stress release model was proposed based on the model test results by considering the fundamental behavior of granular materials. It was found that stress in sand increased linearly with applied load. There is almost no change of stress at the beginning of unloading; significant stress release took place in later period of unloading and shown an obvious boundary. It is analyzed that the difference between loading and unloading was attributed to the internal friction of sand. Stress can only release when “removed load” is larger than internal friction resistance. Whether or not and how much stress will release not only depends on the internal friction resistance, but also is related with magnitude of unloading and stress state prior to unloading.

Key words: sand, internal friction resistance, loading and unloading, stress release

CLC Number: 

  • TU 443
[1] LI Hong-po, CHEN Zheng, FENG Jian-xue, MENG Yu-han, MEI Guo-xiong, . Study on position optimization of horizontal drainage sand blanket of double-layer foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 437-444.
[2] MENG Yu-han, ZHANG Bi-sheng, CHEN Zheng, MEI Guo-xiong, . Consolidation analysis of foundation with sand blankets under ramp loading [J]. Rock and Soil Mechanics, 2020, 41(2): 461-468.
[3] MA Wei-jia, CHEN Guo-xing, WU Qi, . Experimental study on liquefaction resistance of coral sand under complex loading conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 535-542.
[4] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
[5] YAN Chao-ping, LONG Zhi-lin, ZHOU Yi-chun, KUANG Du-min, CHEN Jia-min, . Investigation on the effects of confining pressure and particle size of shear characteristics of calcareous sand [J]. Rock and Soil Mechanics, 2020, 41(2): 581-591.
[6] LIANG Ke, CHEN Guo-xing, LIU Kang, WANG Yan-zhen, . Degradation properties and prediction model of maximum shear modulus of saturated coral sand under cyclic triaxial loading [J]. Rock and Soil Mechanics, 2020, 41(2): 601-611.
[7] LIANG Ke, HE Yang, CHEN Guo-xing, . Experimental study of dynamic shear modulus and damping ratio characteristics of coral sand from Nansha Islands [J]. Rock and Soil Mechanics, 2020, 41(1): 23-31.
[8] YANG Fu-jian, HU Da-wei, TIAN Zhen-bao, ZHOU Hui, LU Jing-jing, LUO Yu-jie, GUI Shu-qiang, . Evolution and mechanism of permeability of unconsolidated sandstone under high hydrostatic pressure compaction [J]. Rock and Soil Mechanics, 2020, 41(1): 67-77.
[9] RUI Sheng-jie, GUO Zhen, WANG Li-zhong, ZHOU Wen-jie, LI Yu-jie, . Experimental study of cyclic shear stiffness and damping ratio of carbonate sand-steel interface [J]. Rock and Soil Mechanics, 2020, 41(1): 78-86.
[10] LI Xiao-gang, ZHU Chang-qi, CUI Xiang, ZHANG Po-yu, WANG Rui, . Experimental study of triaxial shear characteristics of carbonate mixed sand [J]. Rock and Soil Mechanics, 2020, 41(1): 123-131.
[11] QIN Yu-lan, ZOU Xin-jun, CAO Xiong. Internal forces and deformations of a single pile in uniform sand under combined action of horizontal harmonic load and torque [J]. Rock and Soil Mechanics, 2020, 41(1): 147-156.
[12] LIU Bo, MA Yong-jun, SHENG Hai-long, CHANG Ya-ru, YU Jun-jie, JIA Shuai-long, . Experiments on mechanical properties of Cretaceous red sandstone after freeze-thaw process [J]. Rock and Soil Mechanics, 2019, 40(S1): 161-171.
[13] ZHANG Chen-yang, CHEN Min, HU Ming-jian, WANG Xin-zhi, TANG Jian-jian, . Effect of fine particles content on shear strength of calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(S1): 195-202.
[14] TANG Guo-yi, LIU Zhi, LIU Zheng-hong, TANG Li-jun, YU Yong-tang, JIANG Wen, . Application of low energy level dynamic compaction method to Angola Quelo sand [J]. Rock and Soil Mechanics, 2019, 40(S1): 203-209.
[15] GAO Yun-chang, GAO Meng, YIN Shi, . Experiments on static characteristics of sea sand solidified by polyurethane [J]. Rock and Soil Mechanics, 2019, 40(S1): 231-236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Hong-bao, YIN Guang-zhi, LI Xiao-shuang. Experimental study of characteristics of tensile burned gritstone[J]. , 2010, 31(4): 1143 -1146 .
[2] LIU Qing-bing,XIANG Wei,ZHANG Wei-feng,CUI De-shan. Experimental study of ionic soil stabilizer-improves expansive soil[J]. , 2009, 30(8): 2286 -2290 .
[3] KUANG Yu-chun, WU Kai-song, YANG Ying-xin, MA De-kun. Simulation model of drilling process of three-cone bit[J]. , 2009, 30(S1): 235 -238 .
[4] DU Wen-qi, WANG Gang. Statistical analysis of earthquake-induced sliding displacements of earth structures[J]. , 2011, 32(S1): 520 -0525 .
[5] XU Zhen-hao , LI Shu-cai , LI Li-ping , HOU Jian-gang , SUI Bin , SHI Shao-shuai. Risk assessment of water or mud inrush of karst tunnels based on analytic hierarchy process[J]. , 2011, 32(6): 1757 -1766 .
[6] WEN Shi-qing , LIU Han-long , CHEN Yu-min. Analysis of load transfer characteristics of single grouted gravel pile[J]. , 2011, 32(12): 3637 -3641 .
[7] GONG Si-yuan,DOU Lin-ming,HE Jiang,HE Hu,LU Cai-ping,MU Zong-long. Study of correlation between stress and longitudinal wave velocity for deep burst tendency coal and rock samples in uniaxial cyclic loading and unloading experiment[J]. , 2012, 33(1): 41 -47 .
[8] LI Shun-qun ,GAO Ling-xia ,CHAI Shou-xi. Significance and interaction of factors on mechanical properties of frozen soil[J]. , 2012, 33(4): 1173 -1177 .
[9] MENG Zhen, CHEN Jin-jian, WANG Jian-hua, YIN Zhen-yu. Study of model test on bearing capacity of screw piles in sand[J]. , 2012, 33(S1): 141 -145 .
[10] LUO Gang , HU Xie-wen , GU Cheng-zhuang . Study of kinetic failure mechanism and starting velocity of consequent rock slopes under strong earthquake[J]. , 2013, 34(2): 483 -490 .