›› 2010, Vol. 31 ›› Issue (2): 407-415.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

A modified ALPHA model based on subloading surface theory and its numerical implementation

ZHAN Yun-gang1, YUAN Fan-fan2, LUAN Mao-tian3, 4   

  1. 1. School of Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 3. Institute of Geotechnical Engineering, School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China; 4. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
  • Received:2008-08-18 Online:2010-02-10 Published:2010-03-24

Abstract:

ALPHA model is modified based on subloading surface theory; and the initial anisotropy induced by settlement is also considered. Considering the characters of the modified model, a semi-implicit constitutive integration algorithm is proposed. In terms of the algorithm, a user material subroutine is developed in the framework of general-purpose finite element code ABAQUS. Using the subroutine, simulations for triaxial tests are performed; and the results have been compared with the published studies. The comparison shows that the presented algorithms are capable of the numerically implementing of complicated constitutive model; and the modified ALPHA model, which overcomes the deficiencies of modified Cam-Clay model, such as predicting higher peak strength for over consolidated clay and assuming elastic deformation inside the initial yield surface, can depict the nonlinear and nonrecoverable deformation before yielding. Through varying model parameters, more complicated deformation behaviors can be simulated by the modified model.

Key words: ALPHA model, subloading surface theory, semi-implicit constitutive integration algorithm, ABAQUS

CLC Number: 

  • TU 44
[1] LIU Qing-bin, PAN Mao, LIU Jie, GUO Yan-jun, ZHANG Xiao-shuang, YAO Jian-peng, LI Fang-yu, . Paraview visualization and virtual reality of output of finite element analysis in Abaqus [J]. Rock and Soil Mechanics, 2019, 40(12): 4916-4924.
[2] ZHOU Jia-jin, GONG Xiao-nan, YAN Tian-long, ZHANG Ri-hong, . Behavior of sand filled nodular piles under compression in soft soil areas [J]. , 2018, 39(9): 3425-3432.
[3] CUI Xuan, DONG Wei-xin, ZHOU Han-min, SUN Shu-wei,. Secondary development of a constitutive model in ABAQUS for tailings sand using generalized plasticity theory [J]. , 2018, 39(2): 745-752.
[4] GUO Yang, LI Qing, XU Wen-long, QIAN Lu, TIAN Ce. Dynamic fracture process of a pre-crack under linear charge explosion [J]. , 2018, 39(10): 3882-3890.
[5] WANG Ren-chao, CAO Ting-ting, LIU Yan-ru. Implementations of hypoplastic model based on different time integration algorithms [J]. , 2017, 38(5): 1510-1516.
[6] GONG Di-guang, QU Zhan-qing, LI Jian-xiong, QU Guan-zheng, CAO Yan-chao, GUO Tian-kui. Extended finite element simulation of hydraulic fracture based on ABAQUS platform [J]. , 2016, 37(5): 1512-1520.
[7] LI Ming , GUO Pei-jun , LIANG Li , LI Xin,. Hydraulic fracturing characteristics of heterogeneous rock with hard inclusion distributed [J]. , 2016, 37(11): 3130-3136.
[8] LIU Run , LIU Wen-bin , HONG Zhao-hui , WANG Le,. A soil resistance model for subsea pipeline global lateral buckling analysis [J]. , 2015, 36(9): 2433-2441.
[9] WEI Li-min, FENG Sheng-yang, HE Qun, YANG Qi. Improved Koppejan creep model and its application [J]. , 2014, 35(6): 1762-1767.
[10] ZHOU Jia-jin , WANG Kui-hua , GONG Xiao-nan , ZHANG Ri-hong , YAN Tian-long , XU Yuan-rong,. Bearing capacity and load transfer mechanism of static drill rooted nodular piles [J]. , 2014, 35(5): 1367-1376.
[11] QI Yu-liang ,HISANORI Otsuka,. Study of ABAQUS dynamic infinite element artificial boundary [J]. , 2014, 35(10): 3007-3012.
[12] FU Qiang ,DING Xuan-ming ,LIU Han-long ,KONG Gang-qiang . Dynamic analysis of PCC pile composite foundation under train vibration load [J]. , 2013, 34(S2): 413-420.
[13] YANG Miao ,ZHANG Zhong-miao ,LIU Nian-wu ,SHI Mao-fei ,ZHANG Ri-hong . Numerical simulation of compressive mechanical characters of new bored grouting PHC nodular pile [J]. , 2013, 34(7): 2119-2126.
[14] CHEN Pei-shuai , CHEN Wei-zhong , ZHUANG Yan . Forecasting of rockburst with two-step method based on fracture mechanics [J]. , 2013, 34(2): 575-584.
[15] LIU Chun-yuan, LI Guang-hong, LI Bing. Numerical analysis of shaking table test for prestressed pipe piles [J]. , 2012, 33(S1): 265-269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Hong-bao, YIN Guang-zhi, LI Xiao-shuang. Experimental study of characteristics of tensile burned gritstone[J]. , 2010, 31(4): 1143 -1146 .
[2] LIU Qing-bing,XIANG Wei,ZHANG Wei-feng,CUI De-shan. Experimental study of ionic soil stabilizer-improves expansive soil[J]. , 2009, 30(8): 2286 -2290 .
[3] KUANG Yu-chun, WU Kai-song, YANG Ying-xin, MA De-kun. Simulation model of drilling process of three-cone bit[J]. , 2009, 30(S1): 235 -238 .
[4] DU Wen-qi, WANG Gang. Statistical analysis of earthquake-induced sliding displacements of earth structures[J]. , 2011, 32(S1): 520 -0525 .
[5] YAN Zhi-hua, LIU Zhi-wei, LIU Hou-jian. Treatment and parameter selection of high slope of a power plant located in the terraces of Yellow River[J]. , 2009, 30(S2): 465 -468 .
[6] XU Zhen-hao , LI Shu-cai , LI Li-ping , HOU Jian-gang , SUI Bin , SHI Shao-shuai. Risk assessment of water or mud inrush of karst tunnels based on analytic hierarchy process[J]. , 2011, 32(6): 1757 -1766 .
[7] WEN Shi-qing , LIU Han-long , CHEN Yu-min. Analysis of load transfer characteristics of single grouted gravel pile[J]. , 2011, 32(12): 3637 -3641 .
[8] LI Shun-qun ,GAO Ling-xia ,CHAI Shou-xi. Significance and interaction of factors on mechanical properties of frozen soil[J]. , 2012, 33(4): 1173 -1177 .
[9] ZHONG Sheng ,WANG Chuan-ying ,WU Li-xin ,TANG Xin-jian ,WANG Qing-yuan. Borehole radar response characteristics of point unfavorable geo-bodies: forward simulation of its surrounding rock and filling condition[J]. , 2012, 33(4): 1191 -1195 .
[10] MENG Zhen, CHEN Jin-jian, WANG Jian-hua, YIN Zhen-yu. Study of model test on bearing capacity of screw piles in sand[J]. , 2012, 33(S1): 141 -145 .