›› 2010, Vol. 31 ›› Issue (6): 1841-1846.

• Geotechnical Engineering • Previous Articles     Next Articles

Study of deformation and controlling characteristics of limestone roof with thick layer and brittle-ductile state in Jincheng mining area

HAN Li-jun,JIANG Bin-song,HAN Gui-lei,QU Tao   

  1. State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Xuzhou, Jiangsu 221008, China
  • Received:2009-03-04 Online:2010-06-10 Published:2010-06-25

Abstract:

The K2 Limestone Immediate Roof of 15# coal seam in Jincheng mining area is 8-10 m in thickness. Such roof structure, which is dense and hard, belongs to strong and difficult collapse roof. Aiming at the thick limestone roof being possible to face with the large area roof fracture and collapse accident, and based on some mechanical parameters obtained from the rock mechanical test, the deformation and collapse characteristics of brittle-ductile thick limestone roof were analyzed by using key strata theory and synthetically researched by numerical simulation and similar material simulation, obtaining the first weighting step distance, periodic weighting step distance, and the collapse rules of such roof. The researches had similar results that the first weighting step distance is 20-25m and the periodic weighting step distance is 10-15 m. The actual mining practice indicated that the theoretical results are in good agreement with that of experiment on collapse characteristics and weighting step distance of thick limestone roof. Therefore, the research result has provided effective way and method to the research and control of the deformation and collapse characteristics of brittle-ductile thick limestone roof in Jincheng mining area.

Key words: limestone roof, key strata theory, numerical simulation, model made by similar materials, caving interval

CLC Number: 

  • TD 821
[1] LI Fan-fan, CHEN Wei-zhong, LEI Jiang, YU Hong-dan, MA Yong-shang, . Study of mechanical properties of claystone based on plastic damage [J]. Rock and Soil Mechanics, 2020, 41(1): 132-140.
[2] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[3] GUO Yuan-cheng, LI Ming-yu, ZHANG Yan-wei, . Incremental analytical method for prestressed anchor and soil nail wall composite support system [J]. Rock and Soil Mechanics, 2019, 40(S1): 253-258.
[4] YAN Guo-qiang, YIN Yue-ping, HUANG Bo-lin, ZHANG Zhi-hua, DAI Zhen-wei, . Formation mechanism and deformation characteristics of Jinjiling landslide in Wushan, Three Gorges Reservoir region [J]. Rock and Soil Mechanics, 2019, 40(S1): 329-340.
[5] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[6] JIN Ai-bing, LIU Jia-we, ZHAO Yi-qing, WANG Ben-xin, SUN Hao, WEI Yu-dong, . Mechanical characteristics analysis of granite under unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 459-467.
[7] HAN Zheng, SU Bin, LI Yan-ge, WANG Wei, WANG Wei-dong, HUANG Jian-ling, CHEN Guang-qi, . Smoothed particle hydrodynamic numerical simulation of debris flow process based on Herschel-Bulkley-Papanastasiou constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 477-485.
[8] WU Mei-su, ZHOU Cheng, WANG Lin, TAN Chang-ming, . Numerical simulation of the influence of roots and fissures on hydraulic and mechanical characteristics of the soil [J]. Rock and Soil Mechanics, 2019, 40(S1): 519-526.
[9] WU Jin-liang, HE Ji, . Composite element model for dynamic excavation simulation of rock slope [J]. Rock and Soil Mechanics, 2019, 40(S1): 535-540.
[10] WU Feng-yuan, FAN Yun-yun, CHEN Jian-ping, LI Jun, . Simulation analysis of dynamic process of debris flow based on different entrainment models [J]. Rock and Soil Mechanics, 2019, 40(8): 3236-3246.
[11] SUN Feng, XUE Shi-feng, PANG Ming-yu, TANG Mei-rong, ZHANG Xiang, LI Chuan, . 3D simulation of fracture growth from perforation to near-wellbore in horizontal wells based on continuum damage model [J]. Rock and Soil Mechanics, 2019, 40(8): 3255-3261.
[12] MU Rui, PU Shao-yun, HUANG Zhi-hong, LI Yong-hui, ZHENG Pei-xin, LIU Yang, LIU Ze, ZHENG Hong-chao, . Determination of ultimate bearing capacity of uplift piles in combined soil and rock masses [J]. Rock and Soil Mechanics, 2019, 40(7): 2825-2837.
[13] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[14] ZHANG Cong, LIANG Jing-wei, YANG Jun-sheng, CAO Lei, XIE Yi-peng, ZHANG Gui-jin, . Research on the diffusion mechanism and application of pulsate grouting in embankment and dam [J]. Rock and Soil Mechanics, 2019, 40(4): 1507-1514.
[15] YAN Jian, HE Chuan, WANG Bo, MENG Wei, . Influence of high geotemperature on rockburst occurrence in tunnel [J]. Rock and Soil Mechanics, 2019, 40(4): 1543-1550.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Tao,ZHOU De-pei,MA Hui-min,ZHANG Zhong-ping. Point safety factor method for stability analysis of landslide[J]. , 2010, 31(3): 971 -975 .
[2] WEN Song-lin,HU Sheng-gang,HU Han-bing,DENG Fan,REN Jia-li. Test sduty of horizontal bearing mechanism of pile on canal slope[J]. , 2010, 31(6): 1786 -1790 .
[3] LI Wen-pei, WANG Ming-yang, FAN Peng-xian. Research on bearing capacity of tunnel surrounding rock based on discontinuous displacement field[J]. , 2010, 31(8): 2441 -2447 .
[4] ZHANG Ju-lian, SHEN Ming-rong. Sand liquefaction prediction based on stepwise discriminant analysis[J]. , 2010, 31(S1): 298 -302 .
[5] PENG Ming-xiang. Coulumb's unified solution of active earth pressure on retaining wall[J]. , 2009, 30(2): 379 -386 .
[6] YANG Ye, LIU Song-yu, DENG Yong-feng. Effect of reinforced subgrade on differential settlement by model test research[J]. , 2009, 30(3): 703 -706 .
[7] ZHENG Gang, YAN Zhi-xiong, LEI Hua-yang, WANG Sheng-tang. Experimental studies of unloading mechanical properties of silty clay of first marine layer in Tianjin city[J]. , 2009, 30(5): 1201 -1208 .
[8] XIE Yong-jian,WANG Huai-zhong,ZHU He-hua. Soil plugging effect of PHC pipe pile during driving into soft clay[J]. , 2009, 30(6): 1671 -1675 .
[9] JIANG Qing-hui , DENG Shu-shen , ZHOU Chuang-bing. Three-dimensional numerical manifold method for seepage problems with free surfaces[J]. , 2011, 32(3): 879 -884 .
[10] NIU Xue-chao, YANG Ren-shu, SUN Zhong-hui, LIU Cheng-liang, DONG Ju-cai. Field test study of methods for supporting large-section inclined shaft in gravel layer[J]. , 2009, 30(S2): 72 -77 .