›› 2010, Vol. 31 ›› Issue (9): 2805-2810.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis of influence of shear rate on shear strength of sand under high stress

ZHOU Jie 1, 2,ZHOU Guo-qing1,ZHAO Guang-si 1, 2,XU Bin-bin 1, 2,LI Xiao-jun 1, 2   

  1. 1. State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Xuzhou, Jiangsu 221008, China; 2. School of Architecture and Civil Engineering, China University of Mining & Technology, Xuzhou, Jiangsu 221008, China
  • Received:2008-12-29 Online:2010-09-10 Published:2010-09-16

Abstract:

The direct shear strength tests of Fujian standard sand with 16 normal stress levels and 5 series of shear rate were carried out by using the super-high-pressure direct and residual shear testing system DRS1. The test results indicate that the shear strength of sand is influenced by both normal stress level and shear rate; and it has a close relation with particle crushing degree and particle rearrangement/reorientation state after particle crushing (coordinate number Nc). Shear rate has no influence on shear strength of sand under small normal stress; and the Mohr failure envelops are almost same to each other. But when normal stress is relatively large, the shear strength with faster shear rate become smaller; and the Mohr failure envelops show “deflexibility-rise” fluctuation cycle; so the shear rate should be considered in the strength analysis of sand under high normal stress condition.

Key words: high stress level, sand, shear strength, shear rate, particle crushing

CLC Number: 

  • TU 411.7
[1] LI Hong-po, CHEN Zheng, FENG Jian-xue, MENG Yu-han, MEI Guo-xiong, . Study on position optimization of horizontal drainage sand blanket of double-layer foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 437-444.
[2] MENG Yu-han, ZHANG Bi-sheng, CHEN Zheng, MEI Guo-xiong, . Consolidation analysis of foundation with sand blankets under ramp loading [J]. Rock and Soil Mechanics, 2020, 41(2): 461-468.
[3] FAN Ke-wei, LIU Si-hong, LIAO Jie, FANG Bin-xin, WANG Jian-lei, . Experimental study on shearing characteristics of pebbles-filled soilbags [J]. Rock and Soil Mechanics, 2020, 41(2): 477-484.
[4] MA Wei-jia, CHEN Guo-xing, WU Qi, . Experimental study on liquefaction resistance of coral sand under complex loading conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 535-542.
[5] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
[6] YAN Chao-ping, LONG Zhi-lin, ZHOU Yi-chun, KUANG Du-min, CHEN Jia-min, . Investigation on the effects of confining pressure and particle size of shear characteristics of calcareous sand [J]. Rock and Soil Mechanics, 2020, 41(2): 581-591.
[7] LIANG Ke, CHEN Guo-xing, LIU Kang, WANG Yan-zhen, . Degradation properties and prediction model of maximum shear modulus of saturated coral sand under cyclic triaxial loading [J]. Rock and Soil Mechanics, 2020, 41(2): 601-611.
[8] TU Yuan, WANG Kui-hua, ZHOU Jian, HU An-feng, . Application of effective stress method and effective consolidation stress method for strength calculation in preloading ground [J]. Rock and Soil Mechanics, 2020, 41(2): 645-654.
[9] LIANG Ke, HE Yang, CHEN Guo-xing, . Experimental study of dynamic shear modulus and damping ratio characteristics of coral sand from Nansha Islands [J]. Rock and Soil Mechanics, 2020, 41(1): 23-31.
[10] YANG Fu-jian, HU Da-wei, TIAN Zhen-bao, ZHOU Hui, LU Jing-jing, LUO Yu-jie, GUI Shu-qiang, . Evolution and mechanism of permeability of unconsolidated sandstone under high hydrostatic pressure compaction [J]. Rock and Soil Mechanics, 2020, 41(1): 67-77.
[11] RUI Sheng-jie, GUO Zhen, WANG Li-zhong, ZHOU Wen-jie, LI Yu-jie, . Experimental study of cyclic shear stiffness and damping ratio of carbonate sand-steel interface [J]. Rock and Soil Mechanics, 2020, 41(1): 78-86.
[12] LI Xiao-gang, ZHU Chang-qi, CUI Xiang, ZHANG Po-yu, WANG Rui, . Experimental study of triaxial shear characteristics of carbonate mixed sand [J]. Rock and Soil Mechanics, 2020, 41(1): 123-131.
[13] QIN Yu-lan, ZOU Xin-jun, CAO Xiong. Internal forces and deformations of a single pile in uniform sand under combined action of horizontal harmonic load and torque [J]. Rock and Soil Mechanics, 2020, 41(1): 147-156.
[14] LIU Bo, MA Yong-jun, SHENG Hai-long, CHANG Ya-ru, YU Jun-jie, JIA Shuai-long, . Experiments on mechanical properties of Cretaceous red sandstone after freeze-thaw process [J]. Rock and Soil Mechanics, 2019, 40(S1): 161-171.
[15] ZHANG Chen-yang, CHEN Min, HU Ming-jian, WANG Xin-zhi, TANG Jian-jian, . Effect of fine particles content on shear strength of calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(S1): 195-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[3] ZHAN Yong-xiang, JIANG Guan-lu. Study of dynamic characteristics of soil subgrade bed for ballastless track[J]. , 2010, 31(2): 392 -396 .
[4] GAO Guang-yun, ZHAO Yuan-yi, GAO Meng, YANG Cheng-bin. Improved calculation for lateral dynamic impedance of pile groups in layered soil[J]. , 2010, 31(2): 509 -515 .
[5] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[6] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[7] LEI Ming-feng, PENG Li-min, SHI Cheng-hua, AN Yong-lin. Research on construction spatial effects in large-long-deep foundation pit[J]. , 2010, 31(5): 1579 -1584 .
[8] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[9] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[10] WANG Xue-wu,XU Shang-jie,DANG Fa-ning,CHENG Su-zhen. Analysis of stability of dam slope during rapid drawdown of reservoir water level[J]. , 2010, 31(9): 2760 -2764 .