›› 2010, Vol. 31 ›› Issue (12): 4006-4010.

• Numerical Analysis • Previous Articles     Next Articles

Numerical modeling and geological body visualization for complex mine

LIU Xiao-ming, LUO Zhou-quan, YANG Biao, ZHANG Bao   

  1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China
  • Received:2008-12-18 Online:2010-12-10 Published:2010-12-21

Abstract:

The construction of the 3D visualization model and the numerical model of complex geological body is critical in mine, geotechnical, hydraulic and hydropower projects. Aiming at the disadvantages of modeling complex geological body of mine by numerical simulation software, such as the modeling process complex and difficult and mesh generation has great workload, Combined with the advantages of modeling complex geologic body of mine use mine software, on the base of studying the differences between wireframe model and block model, a kind of new method of numerical modeling and geologic body visualization based on complex mine is proposed based on wireframe model. According to the different characteristics of wireframe, taking surface and cavity model as examples, an effective method of converting Surpac surface model and solid model into MIDAS/GTS numerical model exactly is researched; this method has been used to research the cavity stability analysis of Dongguashan Copper Mine successfully. The results show that the new modeling method is feasible and effective, so as to offer a new modeling method for mine design, safety analysis and complex geological body rock soil engineering numerical simulation, etc.

Key words: geological body visualization, 3D geological model, numerical model, Surpac, MIDAS/GTS

CLC Number: 

  • P 642
[1] PU He-fu, SONG Ding-bao, ZHENG Jun-jie, ZHOU Yang, YAN Jing, LI Zhan-yi. Non-linear self-weight consolidation model of saturated soft soil under large-strain condition [J]. Rock and Soil Mechanics, 2019, 40(5): 1683-1692.
[2] CAI Qi-peng, GAN Gang-lu, NG C. W. W., CHEN Xing-xin, XIAO Zhao-yun, . Study on failure mechanism and setback distance of a pile group in sand subjected to normal faulting [J]. Rock and Soil Mechanics, 2019, 40(3): 1067-1075.
[3] YANG Peng, PU He-fu, SONG Ding-bao. Analysis of large-strain consolidation of soft soil foundation with prefabricated vertical drains [J]. Rock and Soil Mechanics, 2019, 40(10): 4049-4056.
[4] CUI Fang-peng, XU Qiang, YIN Yue-ping, HU Rui-lin, CHEN Zi-juan, LIU Wei,. Dynamic response of slope based on fracture mechanisms of strip-shape hypocenter [J]. , 2018, 39(1): 320-330.
[5] SUN Kai-qiang, TANG Chao-sheng, LIU Chang-li, LI Hao-da, WANG Peng, LENG Ting. Research methods of soil desiccation cracking behavior [J]. , 2017, 38(S1): 11-26.
[6] HUANG Mu, GU Lei-yu, LI Xin, LI Chun-hai,. Automatic 3D stratigraphic modeling method based on Voronoi diagram [J]. , 2017, 38(S1): 455-462.
[7] LI Jian-bin, LIU Han-long, KONG Gang-qiang, XIAO Yang, CHU Jian,. Analysis of settlement of reinforced operating expressway using lateral radiation grouting technique [J]. , 2017, 38(S1): 479-487.
[8] CHEN Qi-yu, LIU Gang, LI Xin-chuan, WU Chong-long, TANG Bing-yin,. A visual analysis method of 3D geological models by sequential sections based on real-time vector shear [J]. , 2017, 38(5): 1365-1372.
[9] TANG Bing-yin, WU Chong-long, LI Xin-chuan,. A fine 3D geological modeling method based on TIN-CPG hybrid spatial data model [J]. , 2017, 38(4): 1218-1225.
[10] YU Peng-cheng, ZHANG Ying-bin, ZHAO Xing-quan, HUANG Xiao-fu,. An improved contact searching method in 2D-DDA [J]. , 2017, 38(3): 902-910.
[11] CHEN Qing-fa, YANG Jia-cai, GAO Yuan, NIU Wen-jing, CHEN Da-peng, LIU Jun-guang,. Comparative study of construction method for 3D numerical model of large complex geologic body [J]. , 2016, 37(S2): 753-760.
[12] YANG Guang-hua, HUANG Zhong-ming, JIANG Yan, XU Chuan-bao,. Improvement of calculation model of double-row piles for supporting deep excavation [J]. , 2016, 37(S2): 1-15.
[13] LUO Ru-ping, LI Wei-chao, YANG Min, . Accumulated response of offshore large-diameter monopile under lateral cyclic loading [J]. , 2016, 37(S2): 607-612.
[14] WANG Chao, ZHANG She-rong, ZHANG Feng-hua, DU Cheng-bo. A dynamic simulation analysis method of high-steep slopes based on real-time numerical model and its applications [J]. , 2016, 37(8): 2383-2390.
[15] LI Guo-wei , GU Zhong-we , HE Guan-jun, ZHANG Jun-biao, WANG Run, HU Long-sheng,. Anchorage scheme against imminent failure of slope based on on-site monitoring and 3D numerical modeling [J]. , 2016, 37(5): 1408-1416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[3] SUN De-an,CHEN Bo. Mechanical behavior of remolded overconsolidated Shanghai soft clay and its elastoplastic simulation[J]. , 2010, 31(6): 1739 -1743 .
[4] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[5] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[6] LEI Jin-bo,CHEN Cong-xin. Research on load transfer mechanism of composite foundation of rigid pile with cap based on hyperbolic model[J]. , 2010, 31(11): 3385 -3391 .
[7] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[8] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[9] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[10] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .