›› 2016, Vol. 37 ›› Issue (5): 1408-1416.doi: 10.16285/j.rsm.2016.05.024

• Geotechnical Engineering • Previous Articles     Next Articles

Anchorage scheme against imminent failure of slope based on on-site monitoring and 3D numerical modeling

LI Guo-wei1, 2, GU Zhong-wei3, HE Guan-jun3, ZHANG Jun-biao4, WANG Run5, HU Long-sheng6   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 2. Highway and Railway Research Institute, Hohai University, Nanjing, Jiangsu 210098, China; 3. Geotechnical Research Institute, Hohai University, Nanjing 210098, China; 4. Guangdong Province Highway Co., Ltd., Guangzhou, Guangdong 510010, China; 5. Qingdao Geologica Exploration institute of China Metallurgical Geology Bureau, Qingdao, Shangdong 266061, China; 6. Patent Examination Cooperation Jiangsu Center of Patent Office, SIPO, Suzhou, Jiangsu 215000, China
  • Received:2015-01-31 Online:2016-05-10 Published:2018-06-09
  • Supported by:

    This work was supported by the Key Program for Communication Science and Technology of Guangdong Province and Special Funds for Universities(2014B04914).

Abstract: In this paper, an anchorage scheme against the imminent failure of slope in practice has been proposed by considering on-site monitoring data and 3D numerical modeling. From the results, the position, time interval and initial time of internal shear slip plane are observed, according to the continuous monitoring data of the slope. Therefore, the position and shape of a potential slide plane can be predicted. Since the influence of the section morphology on slope stability and deformation is considered in this study, the results obtained by 3D numerical modeling are more reasonable. By fitting the external deformation and sliding surface with the numerical modeling and the measured data, the equivalent mechanical parameters of slope in any state are determined, according to the limit equilibrium condition of the imminent failure slope. From the equivalent mechanical parameters, the ultimate shape and position of the potential sliding surface are obtained by 3D simulation. The length and density of the reinforcement anchor cable can be further decided properly. The performance of this case study demonstrates that the proposed reinforcement scheme is reliable.

Key words: high slope, slip plane, deformation, numerical modeling, anchoring

CLC Number: 

  • TU 431

[1] GUO Jian, CHEN Jian, HU Yang. Time series prediction for deformation of the metro foundation pit based on wavelet intelligence model [J]. Rock and Soil Mechanics, 2020, 41(S1): 299-304.
[2] ZHAO Jiu-bin, LIU Yuan-xue, HE Shao-qi, YANG Jun-tang, BAI Zhun, . Mathematical statistical model of horizontal displacement and rainfall of step deformation landslide in Three Gorges reservoir area [J]. Rock and Soil Mechanics, 2020, 41(S1): 305-311.
[3] BAO Ning, WEI Jing, CHEN Jian-feng. Three dimensional discrete element analysis of soil arching in piled embankment [J]. Rock and Soil Mechanics, 2020, 41(S1): 347-354.
[4] DUAN Jun-yi, YANG Guo-lin, HU Min, QIU Ming-ming, YU Yun, . Experimental study on deformation characteristics of reinforced soil cushion subjected to loading and unloading [J]. Rock and Soil Mechanics, 2020, 41(7): 2333-2341.
[5] TONG Xing, YUAN Jing, JIANG Ye-xiang, LIU Xing-wang, LI Ying, . Calculation of layered unloading additional stress of foundation pit based on Mindlin solution and the analysis of multiple factors influencing the rebound deformation [J]. Rock and Soil Mechanics, 2020, 41(7): 2432-2440.
[6] YAO Hong-bo, LI Bing-he, TONG Lei, LIU Xing-wang, CHEN Wei-lin. Analysis of metro tunnel deformation by upper excavation unloading considering spatial effect in soft soil [J]. Rock and Soil Mechanics, 2020, 41(7): 2453-2460.
[7] BAI Xue-yuan, WANG Xue-bin, SHU Qin, . Continuum-discontinuum simulation of effects of internal friction angle on local fracture of circular cavern surrounding rock under hydrostatic pressure [J]. Rock and Soil Mechanics, 2020, 41(7): 2485-2493.
[8] HOU Gong-yu, JING Hao-yong, LIANG Jin-ping, TAN Jin-xin, ZHANG Yong-kang, YANG Xi, XIE Xin, . Experimental study on surrounding rock deformation and acoustic emission characteristics of rectangular roadway under different loads [J]. Rock and Soil Mechanics, 2020, 41(6): 1818-1828.
[9] WANG Gang, QIN Xiang-jie, JIANG Cheng-hao, ZHANG Zhen-yu. Simulations of temperature effects on seepage and deformation of coal microstructure in 3D CT reconstructions [J]. Rock and Soil Mechanics, 2020, 41(5): 1750-1760.
[10] WANG Kai-xing, DOU Lin-ming, PAN Yi-shan, OPARIN V N . Experimental study of incompatible dynamic response feature of block rock mass [J]. Rock and Soil Mechanics, 2020, 41(4): 1227-1234.
[11] FANG Jin-jin, FENG Yi-xin, YU Yong-qiang, LI Zhen, LIN Zhi-bin. Wetting deformation characteristics of intact loess under true triaxial conditions [J]. Rock and Soil Mechanics, 2020, 41(4): 1235-1246.
[12] DU Yu-xiang, SHENG Qian, WANG Shuai, FU Xiao-dong, LUO Hong-xing, TIAN Ming, WANG Li-wei, MEI Hong-ru. Study of microstructure and mechanical properties of semi-diagenetic rock of Xigeda Formation [J]. Rock and Soil Mechanics, 2020, 41(4): 1247-1258.
[13] HUANG Xiao-hu, YI Wu, HUANG Hai-feng, DENG Yong-huang. Study and application of the relationship between preferential flow penetration and slope deformation [J]. Rock and Soil Mechanics, 2020, 41(4): 1396-1403.
[14] HOU Gong-yu, HU Tao, LI Zi-xiang, XIE Bing-bing, XIAO Hai-lin, ZHOU Tian-ci, . Experimental study on overburden deformation evolution under mining effect based on distributed fiber optical sensing technology [J]. Rock and Soil Mechanics, 2020, 41(3): 970-979.
[15] YANG Jun, WEI Qing-long, WANG Ya-jun, GAO Yu-bing, HOU Shi-lin, QIAO Bo-wen, . Roof deformation mechanism and control measures of pillarless mining with gob-side entry retaining by roof cutting and pressure relief [J]. Rock and Soil Mechanics, 2020, 41(3): 989-998.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!