Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (7): 2453-2460.doi: 10.16285/j.rsm.2019.1385

• Geotechnical Engineering • Previous Articles     Next Articles

Analysis of metro tunnel deformation by upper excavation unloading considering spatial effect in soft soil

YAO Hong-bo, LI Bing-he, TONG Lei, LIU Xing-wang, CHEN Wei-lin   

  1. Zhejiang Province Architectural Design and Research Institute, Hangzhou, Zhejiang 310006, China
  • Received:2019-08-09 Revised:2020-01-02 Online:2020-07-10 Published:2020-09-20
  • Supported by:
    This work was supported by Key Research and Development of Zhejiang Province (2017C03020).

Abstract: The spatial effect of the foundation pit on the tunnel has a great influence on the tunnel deformation. In this paper, a new model of unloading ratio considering spatial effect is developed. It can comprehensively consider the influences of the depth,width and longitudinal length along the tunnel of the upper foundation pit. The three-dimensional finite element method and field measurement method are employed to determine the influence of spatial effect of the upper foundation pit on the tunnel deformation. Numerical result and field monitoring data show that the deformation of the shield tunnel is mainly caused by upper excavation unloading in the main overburden area over the shield tunnel, the construction of foundation pits outside the main overburden area has little effect on the maximum uplift deformation of tunnel, and in the main overburden area the maximum uplift deformation of tunnel is approximately linear with the unloading ratio proposed in this paper. In soft soil area the uplift deformation of the tunnel by upper excavation unloading can be controlled by controlling the unloading ratio.

Key words: metro tunnel, uplift deformation, upper excavation, unloading ratio, spatial effect, soft soil

CLC Number: 

  • TU 43
[1] LU Tai-shan, LIU Song-yu, CAI Guo-jun, WU Kai, XIA Wen-jun, . Study on the disturbance and recompression settlement of soft soil induced by foundation excavation [J]. Rock and Soil Mechanics, 2021, 42(2): 565-573.
[2] YUE Jian-yong. In situ measurement and numerical simulation for the environmental vibration induced by urban subway transit [J]. Rock and Soil Mechanics, 2020, 41(8): 2756-2764.
[3] ZHANG Xue-dong, CAI Hong, WEI Ying-qi, ZHANG Zi-tao, LIANG Jian-hui, HU Jing. Characterization of the seismic behavior of tailings reservoir founded on soft soil using dynamic centrifuge tests [J]. Rock and Soil Mechanics, 2020, 41(4): 1287-1294.
[4] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[5] HE Zhi-jun, LEI Hao-cheng, XIA Zhang-qi, ZHAO Lian-heng. Analysis of settlement and internal force displacement of single pile in multilayer soft soil foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 655-666.
[6] HE Lei, ZHANG Yang, MA Shan-qing, . A study on the calculation method of horizontal displacement of adjacent tunnels caused by static pressure sinking piles [J]. Rock and Soil Mechanics, 2020, 41(11): 3740-3747.
[7] YU Ting, SHAO Lei. Study of dynamic characteristics of dam foundation on deep riverbed overburden with soft soil layer [J]. Rock and Soil Mechanics, 2020, 41(1): 267-277.
[8] DING Zhi, ZHANG Xiao, JIN Jie-ke, WANG Li-zhong, . Measurement analysis on whole excavation of foundation pit and deformation of adjacent metro tunnel [J]. Rock and Soil Mechanics, 2019, 40(S1): 415-423.
[9] ZHANG Kui, ZHAO Cheng-gang, LI Wei-hua. Study of the seismic response of the seafloor ground containing soft soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2456-2468.
[10] PU He-fu, SONG Ding-bao, ZHENG Jun-jie, ZHOU Yang, YAN Jing, LI Zhan-yi. Non-linear self-weight consolidation model of saturated soft soil under large-strain condition [J]. Rock and Soil Mechanics, 2019, 40(5): 1683-1692.
[11] WANG Tie-hang, JIN Xin, LUO Yang, ZHANG Song-lin. A method for evaluation of loess collapse potential of unloading [J]. Rock and Soil Mechanics, 2019, 40(4): 1281-1290.
[12] LIU Nian-wu, CHEN Yi-tian, GONG Xiao-nan, YU Ji-tao, . Analysis of deformation characteristics of foundation pit of metro station and adjacent buildings induced by deep excavation in soft soil [J]. Rock and Soil Mechanics, 2019, 40(4): 1515-1525.
[13] YANG Peng, PU He-fu, SONG Ding-bao. Analysis of large-strain consolidation of soft soil foundation with prefabricated vertical drains [J]. Rock and Soil Mechanics, 2019, 40(10): 4049-4056.
[14] LI Jian-min, TENG Yan-jing. Regularity and calculation method of rebound deformation and recompression deformation of soil based on bearing test [J]. , 2018, 39(S1): 113-121.
[15] XIA Chang-qing, HU An-feng, CUI Jun, Lü Wen-xiao, XIE Kang-he, . Analytical solutions for one-dimensional nonlinear consolidation of saturated soft layered soils [J]. , 2018, 39(8): 2858-2864.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[3] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[4] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[5] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[6] DU Zuo-long, HUANG Mao-song, LI Zao. DCM-based on ground loss for response of group piles induced by tunneling[J]. , 2009, 30(10): 3043 -3047 .
[7] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[8] ZHU Ze-qi, SHENG Qian, MEI Song-hua, ZHANG Zhan-rong. Improved ubiquitous-joint model and its application to underground engineering in layered rock masses[J]. , 2009, 30(10): 3115 -3121 .
[9] XU Yuan-jie, PAN Jia-jun, LIU Zu-die. An algorithm for slope paving of concrete faced rockfill dams[J]. , 2009, 30(10): 3139 -3144 .
[10] ZHOU Xiao-jie, JIE Yu-xin, LI Guang-xin. Numerical simulation of piping based on coupling seepage and pipe flow[J]. , 2009, 30(10): 3154 -3158 .