Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (11): 3740-3747.doi: 10.16285/j.rsm.2020.0280

• Geotechnical Engineering • Previous Articles     Next Articles

A study on the calculation method of horizontal displacement of adjacent tunnels caused by static pressure sinking piles

HE Lei1, ZHANG Yang2, MA Shan-qing1   

  1. 1. Power Transmission and Transformation Engineering Research Institute, China Electric Power Research Institute, Beijing 102401, China; 2. Tianjin Municipal Engineering Design & Research Institute, Tianjin 300051, China
  • Received:2020-01-09 Revised:2020-04-13 Online:2020-11-11 Published:2020-12-25
  • Supported by:
    This work was supported by the Innovation Fund Project of China Electric Power Research Institute (GC83-18-002).

Abstract: In the process of static piling, there will be a strong soil squeezing effect, which will cause disturbance and deformation of the soil around the pile and the adjacent underground cable tunnel. If the deformation is too large, it may destroy the waterproof structure of the tunnel, causing leakage and seriously affecting the normal use and safety of the tunnel. Based on the theory of cylindrical hole expansion and the method of foundation bed coefficient, the theoretical calculation method of stress and horizontal displacement of surrounding strata and adjacent existing cable tunnels under the action of static piling in saturated soft soil areas are firstly studied. Secondly, considering the effect of group pile, the theoretical calculation method of horizontal displacement of adjacent existing cable tunnels caused by a single row of group piles construction is deduced, and the range of influence coefficient of group pile effect is studied. Finally, the theoretical calculation and numerical simulation of practical engineering problems are carried out. The results show that the method proposed in this paper can effectively calculate the horizontal displacement of adjacent existing cable tunnels, and the results are in good agreement with the numerical simulation results. The research can provide a reference for the prediction and protection of the disturbance to cable tunnels in the construction of adjacent pile foundations.

Key words: saturated soft soil, static piling, cable tunnel, horizontal displacement, influence coefficient of group pile effect

CLC Number: 

  • P 642.3
[1] LU Liang, HE Lin-yao, WANG Zong-jian, KATSUHIKO ARAI, . Partition calculation theory of horizontal displacement in reinforced earth retaining wall under earthquake [J]. Rock and Soil Mechanics, 2021, 42(2): 401-410.
[2] ZHAO Jiu-bin, LIU Yuan-xue, HE Shao-qi, YANG Jun-tang, BAI Zhun, . Mathematical statistical model of horizontal displacement and rainfall of step deformation landslide in Three Gorges reservoir area [J]. Rock and Soil Mechanics, 2020, 41(S1): 305-311.
[3] SHEN Hong, LI Xiao, LEI Mei-qing, XU Wen-bo, YU Xiu-ling, . Conception and model test of shear bond supporting system [J]. Rock and Soil Mechanics, 2019, 40(7): 2574-2580.
[4] PU He-fu, SONG Ding-bao, ZHENG Jun-jie, ZHOU Yang, YAN Jing, LI Zhan-yi. Non-linear self-weight consolidation model of saturated soft soil under large-strain condition [J]. Rock and Soil Mechanics, 2019, 40(5): 1683-1692.
[5] YANG Peng, PU He-fu, SONG Ding-bao. Analysis of large-strain consolidation of soft soil foundation with prefabricated vertical drains [J]. Rock and Soil Mechanics, 2019, 40(10): 4049-4056.
[6] XIA Chang-qing, HU An-feng, CUI Jun, Lü Wen-xiao, XIE Kang-he, . Analytical solutions for one-dimensional nonlinear consolidation of saturated soft layered soils [J]. , 2018, 39(8): 2858-2864.
[7] ZHOU Yong, LING Yong-qiang, YANG Xiao-hui, . Relationship between the displacement and stability of pile anchor retaining structure considering additional stress [J]. , 2018, 39(8): 2913-2921.
[8] WANG Zheng-zhen, GONG Wei-ming, DAI Guo-liang,WANG Xiao-yang, LI Liang-liang, XIAO Gang,. Field test on composite foundation with thick cushion and sand pile group [J]. , 2018, 39(10): 3755-3762.
[9] JIA Min-cai , QIANG Xiao , YE Jian-zhong,. Comparison study of reinforcement effect of HDPE/PET geogrids in fill embankment [J]. , 2015, 36(S1): 491-495.
[10] XIA Yuan-you , CHEN Chun-shu , BAKRI Mudthir , WANG Zhi-de , ZHOU Xiong,. Analysis of horizontal displacement of soil induced by shallow tunnel excavation [J]. , 2015, 36(2): 354-360.
[11] SHANGGUAN Shi-qing , YANG Min , LI Wei-chao , . Distance between location of displacement applied boundary and passive pile [J]. , 2015, 36(10): 2934-2938.
[12] SHAN Ren-liang , DONG Hong-guo , WEI Long-fei , WEI Wen-kang , Lü Jin-yang,. FLAC3D simulation of horizontal displacement and axial force of soil nailing in silty sand soil nailing wall [J]. , 2014, 35(S2): 565-571.
[13] ZHU Xun-guo ,CHEN Feng ,XU Meng-lin ,ZHAO De-shen . Study of strata movement law through similar model test in the Dalian city subway shield tunnelling [J]. , 2013, 34(S1): 148-154.
[14] LI Guo-wei , BIAN Sheng-chuan , LU Xiao-cen , YANG Tao , LEI Guo-hui . Field test on extruding soil caused of PHC pipe pile driving by static pressure for improving soft foundation of widened embankment [J]. , 2013, 34(4): 1089-1096.
[15] ZENG Qing-you. Image observation and numerical simulation for sand around active laterally loading pile [J]. , 2012, 33(7): 2209-2213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[2] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[3] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[4] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[5] WEN Sen, ZHAO Yan-xi, YANG Sheng-qi. Prediction on penetration rate of TBM based on Monte Carlo-BP neural network[J]. , 2009, 30(10): 3127 -3132 .
[6] ZHOU Xiao-jie, JIE Yu-xin, LI Guang-xin. Numerical simulation of piping based on coupling seepage and pipe flow[J]. , 2009, 30(10): 3154 -3158 .
[7] WU Chang-yu, ZHANG Wei, LI Si-shen, ZHU Guo-sheng. Research on mechanical clogging mechanism of releaf well and its control method[J]. , 2009, 30(10): 3181 -3187 .
[8] CUI Hao-dong, ZHU Yue-ming. Back analysis of seepage field of Ertan high arch dam foundation[J]. , 2009, 30(10): 3194 -3199 .
[9] JIA Yu-feng,CHI Shi-chun,LIN Gao. Constitutive model for coarse granular aggregates incorporating particle breakage[J]. , 2009, 30(11): 3261 -3266 .
[10] KONG Wei-xue,RUI Yong-qin,DONG Bao-di. Determination of dilatancy angle for geomaterials under non-associated flow rule[J]. , 2009, 30(11): 3278 -3282 .