›› 2011, Vol. 32 ›› Issue (2): 585-592.

• Numerical Analysis • Previous Articles     Next Articles

Numerical simulation triaxial tests for coarse-grained soil and preliminary study of initial fabric of sample grain

WANG Guang-jin 1, 3, YANG Chun-he 1, 2 , ZHANG Chao2, MA Hong-ling2, MAO Hai-jun2, HOU Ke-peng3   

  1. 1. College of Resources and Environmental Science, Chongqing University, Chongqing 400044, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 3. Faculty of Land Resources Engineeirng, Kunming University of Science and Technology, Kunming 650093, China
  • Received:2010-01-22 Online:2011-02-10 Published:2011-02-16

Abstract:

The initial fabric of sample grain is a hard artificial controlling factor in the laboratory triaxial tests of coarse-grained soil. Based on cellular automata method, combining the laboratory triaxial tests of coarse-grained soil developed the HHC-CA model which generated the coarse-grained soil samples of different initial fabrics of grain to characterize the heterogeneous and random distribution of coarse-grained soil grain group. Then by means of the fast lagrangian analysis of continua in three dimensions (FLAC3D), conducting triaxial numerical simulation tests of coarse-grained soil and discussing the relationship between the gravel contents of sample shear band and samples and internal friction angle. Numerical simulation results indicate that the relationship between internal friction angle of coarse-grained soil and gravel contents of samples shear band were increasing function in the same size grading. According to the increasing of samples gravel contents, the internal friction angle might reduce, but the mean internal friction angle significantly increases with the increment of samples gravel contents.

Key words: coarse-grained soil, initial fabric of grain, cellular automaton, shear band, gravel contents

CLC Number: 

  • TU 411
[1] SUN Hong, SONG Chun-yu, TENG Mu-wei, GE Xiu-run. Pore evolution characteristics of soft clay under loading [J]. Rock and Soil Mechanics, 2020, 41(1): 141-146.
[2] WU Er-lu, ZHU Jun-gao, GUO Wan-li, LU Yang-yang, . Experimental study of compaction characteristics of coarse-grained soil based on gradation equation [J]. Rock and Soil Mechanics, 2020, 41(1): 214-220.
[3] FU Long-long, ZHOU Shun-hua, TIAN Zhi-yao, TIAN Zhe-kan, . Force chain evolution in granular materials during biaxial compression [J]. Rock and Soil Mechanics, 2019, 40(6): 2427-2434.
[4] DING Jian-yuan, CHEN Xiao-bin, ZHANG Jia-sheng, LIU Yi-yin, XIAO Yuan-jie, . Predicting model for coarse-grained soil particle breakage process using logarithmic probability regression mathematic method [J]. Rock and Soil Mechanics, 2019, 40(4): 1465-1473.
[5] GUO Wan-li, ZHU Jun-gao, QIAN Bin, ZHANG Dan, . Particle breakage evolution model of coarse-grained soil and its experimental verification [J]. Rock and Soil Mechanics, 2019, 40(3): 1023-1029.
[6] GUO Wan-li, CAI Zheng-yin, WU Ying-li, HUANG Ying-hao. Study on the particle breakage energy and dilatancy of coarse-grained soils [J]. Rock and Soil Mechanics, 2019, 40(12): 4703-4710.
[7] LI Xin-ming, KONG Ling-wei, GUO Ai-guo, . Experimental study of the influence of unloading rate on the shear mechanical properties of undisturbed expansive clay [J]. Rock and Soil Mechanics, 2019, 40(10): 3758-3766.
[8] CHEN Dun, MA Wei, WANG Da-yan, MU Yan-hu, LEI Le-le,WANG Yong-tao, ZHOU Zhi-wei, CAI Cong, . Experimental study of deformation characteristics of frozen clay under directional shear stress path [J]. , 2018, 39(7): 2483-2490.
[9] ZHU Shun-ran, XU Chao, DING Jin-hua,. Laminated shear test of geotextile-sand interface [J]. , 2018, 39(5): 1775-1780.
[10] WANG Xue-bin, ZHANG Nan, PAN Yi-shan, ZHANG Bo-wen, DU Ya-zhi,. Experimental studies of damages and shear band interactions for clay specimens in uniaxial compression [J]. , 2018, 39(4): 1168-1175.
[11] GUO Wan-li, ZHU Jun-gao, YU Ting, JIN Wei,. Application of gradation equation for coarse-grained soil [J]. , 2018, 39(10): 3661-3667.
[12] ZHU Ze-qi, SHENG Qian, CHENG Hong-zhan, LI Jian-he, BIAN Xiao-man. 3D stochastic model and numerical simulation of soil-rock mixture based on direct method [J]. , 2017, 38(4): 1188-1194.
[13] ZHUANG Li, GONG Quan-mei,. Shear band characteristics of Toyoura sand in plane strain compression with decreasing confining pressure [J]. , 2016, 37(S1): 201-208.
[14] GAO Jun-cheng , GUO Ying , JIA Jin-qing , TU Bing-xiong,. Progressive failure behavior of saturated fine sand based on digital image measuring system [J]. , 2016, 37(5): 1343-1350.
[15] GU Lu ,WANG Xue0-bin ,DU Ya-zhi ,FENG Wei-wu,. Experimental studies of rotation angles of principal strain axes for wet sandy soil specimens under uniaxial compression [J]. , 2016, 37(4): 1013-1022.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHU Xi-hua, XU Yuan-jie. Studies on transformation from M-C criterion to Drucker-Prager criterions based on distortion energy density[J]. , 2009, 30(10): 2985 -2990 .
[2] SUN Ping, PENG Jian-bing, YIN Yue-ping, WU Shu-ren. Tensile test and simulation analysis of fracture process of loess[J]. , 2010, 31(2): 633 -637 .
[3] ZHANG Xian-wei, WANG Chang-ming, LI Jun-xia, MA Dong-he, CHEN Duo-cai. Variation characteristics of soft clay micropore in creep condition[J]. , 2010, 31(4): 1061 -1067 .
[4] LU Ying-fa, CHENG Zhu-lei, XIE Wen-liang, Lü Zhi-zhong. Application of geotechnics to sanitation landfill of refuse[J]. , 2009, 30(1): 91 -98 .
[5] WANG Zhi-ping,HU Min-yun,XIA Ling-tao. Research on compressibility of municipal solid waste by laboratory tests[J]. , 2009, 30(6): 1681 -1686 .
[6] LU Jun-fu,WANG Ming-nian,JIA Yuan-yuan,YU Yu, TAN Zhong-sheng. Research on construction time of secondary lining of large section loess tunnel for high-speed railway[J]. , 2011, 32(3): 843 -848 .
[7] WANG Cheng-hua, AN Jian-guo. Numerical analyses of vertical bearing capacity of foundations with enlarged pile group[J]. , 2011, 32(S2): 580 -585 .
[8] FANG Tao , LIU Xin-rong , GENG Da-xin , LUO Zhao , JI Xiao-tuan , ZHENG Ming-xin . Model testing study of vertical bearing behaviors for large diameter pile with variable cross-section (I)[J]. , 2012, 33(10): 2947 -2952 .
[9] LI Jie ,LI Wen-pei ,SHI Cun-cheng ,WANG De-rong ,FAN Peng-xian . Research on stress state of circular openings based on shearing slip[J]. , 2012, 33(11): 3271 -3277 .
[10] HUANG Jun-yu , XU Song-lin , WANG Dao-rong , HU Shi-sheng . Investigation on dynamic multiscale model for brittle granular materials[J]. , 2013, 34(4): 922 -932 .