›› 2017, Vol. 38 ›› Issue (4): 1188-1194.doi: 10.16285/j.rsm.2017.04.033

• Numerical Analysis • Previous Articles     Next Articles

3D stochastic model and numerical simulation of soil-rock mixture based on direct method

ZHU Ze-qi, SHENG Qian, CHENG Hong-zhan, LI Jian-he, BIAN Xiao-man   

  1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2015-05-15 Online:2017-04-11 Published:2018-06-05
  • Supported by:

    This work was supported by the NSFC-United Fund Key Support Project of Yunnan (U1402231), the National Program on Key Basic Research Project of China (973 Program)( 2015CB057905) and the General Program of National Natural Science Foundation of China(51279202).

Abstract: From the study of the particle size boundary, rock distribution and particle frequency, a three-dimensional (3D) stochastic model of soil-rock mixture is generated by using the direct method. A set of relatively complete and easily operational method is developed for building the 3D stochastic model. Moreover, a finite-difference model is established with the same distribution as natural soil-rock mixture by combining the newly developed building method and FLAC3D random modeling method. Then, direct shear tests and its numerical simulations are performed to obtain shear stress-displacement curves under different vertical pressures, which is further applied to explore shear failure characteristics of soil-rock mixture and the interaction mechanism between soil and rock. Due to different levels of shear deformation of soil and the horizontal or rotational motion of stone under the friction action, the shear band of soil-rock mixture shows obviously irregular and discontinuous features in the shear process, and the shear stress-displacement curve exhibits significant strain hardening behavior. This study shows that the 3D stochastic model can be used to well represent macroscopic mechanical properties and microscopic failure mechanisms of soil-rock mixture, which can be served as a model to explore the mechanical property.

Key words: soil-rock mixture, direct method, stochastic model, numerical simulation, shear band

CLC Number: 

  • TU 473.1

[1] MAO Hao-yu, XU Nu-wen, LI Biao, FAN Yi-lin, WU Jia-yao, MENG Guo-tao, . Stability analysis of an underground powerhouse on the left bank of the Baihetan hydropower station based on discrete element simulation and microseismic monitoring [J]. Rock and Soil Mechanics, 2020, 41(7): 2470-2484.
[2] SHI Lin-ken, ZHOU Hui, SONG Ming, LU Jing-jing, ZHANG Chuan-qing, LU Xin-jing, . Physical experimental study on excavation disturbance of TBM in deep composite strata [J]. Rock and Soil Mechanics, 2020, 41(6): 1933-1943.
[3] ZHANG Zhen, ZHANG Zhao, YE Guan-bao, WANG Meng, XIAO Yan, CHENG Yi, . Progressive failure mechanism of stiffened deep mixed column-supported embankment [J]. Rock and Soil Mechanics, 2020, 41(6): 2122-2131.
[4] SU Jie, ZHOU Zheng-hua, LI Xiao-jun, DONG Qing, LI Yu-ping, CHEN Liu. Discussion on determination of shear wave arrival time based on the polarization effect in downhole method [J]. Rock and Soil Mechanics, 2020, 41(4): 1420-1428.
[5] YANG Gao-sheng, BAI Bing, YAO Xiao-liang, . Study of thawing and consolidation law of ice-rich embankment [J]. Rock and Soil Mechanics, 2020, 41(3): 1010-1018.
[6] SHENG Jian-long, HAN Yun-fei, YE Zu-yang, CHENG Ai-ping, HUANG Shi-bing, . Relative permeability model for water-air two-phase flow in rough-walled fractures and numerical analysis [J]. Rock and Soil Mechanics, 2020, 41(3): 1048-1055.
[7] MA Qiu-feng, QIN Yue-ping, ZHOU Tian-bai, YANG Xiao-bin. Development and application of contact algorithms for rock shear fracture surface [J]. Rock and Soil Mechanics, 2020, 41(3): 1074-1085.
[8] LI Kang, WANG Wei, YANG Dian-sen, CHEN Wei-zhong, QI Xian-yin , TAN Cai. Application of periodic oscillation method in low permeability measurement [J]. Rock and Soil Mechanics, 2020, 41(3): 1086-1094.
[9] LI Fan-fan, CHEN Wei-zhong, LEI Jiang, YU Hong-dan, MA Yong-shang, . Study of mechanical properties of claystone based on plastic damage [J]. Rock and Soil Mechanics, 2020, 41(1): 132-140.
[10] SUN Hong, SONG Chun-yu, TENG Mu-wei, GE Xiu-run. Pore evolution characteristics of soft clay under loading [J]. Rock and Soil Mechanics, 2020, 41(1): 141-146.
[11] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[12] GUO Yuan-cheng, LI Ming-yu, ZHANG Yan-wei, . Incremental analytical method for prestressed anchor and soil nail wall composite support system [J]. Rock and Soil Mechanics, 2019, 40(S1): 253-258.
[13] YAN Guo-qiang, YIN Yue-ping, HUANG Bo-lin, ZHANG Zhi-hua, DAI Zhen-wei, . Formation mechanism and deformation characteristics of Jinjiling landslide in Wushan, Three Gorges Reservoir region [J]. Rock and Soil Mechanics, 2019, 40(S1): 329-340.
[14] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[15] JIN Ai-bing, LIU Jia-we, ZHAO Yi-qing, WANG Ben-xin, SUN Hao, WEI Yu-dong, . Mechanical characteristics analysis of granite under unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 459-467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!