›› 2009, Vol. 30 ›› Issue (S1): 53-57.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study of nonlinear noncubic seepage in netwok rock and its application

XU Wei-sheng1, CHAI Jun-rui 1, 2, CHEN Xing-zhou 1, 3, SUN Xu-shu1   

  1. 1. Institute of Water Resources and Hydro-electric Engineering, Xi’an University of Technology, Xi’an 710048, China; 2. College of Civil & Hydroelectric Engineering, China Three Gorges University, Yichang 443002, China; 3. Northwest Investigation and Design Institute, China Hydropower Engineering Consulting Group Corporation, Xi’an 710065, China
  • Received:2009-04-20 Online:2009-08-10 Published:2011-03-16

Abstract:

Seepage analysis fractural rock mass has very close relation with other analyses of rock mass. Seepage theory of fractural network rock mass is based on linear cubic law. When the water head is very high or the fracture flux is very large, fracture stream doesn’t abide by linear cubic law; if such seepage is still analyzed by using linear cubic law, it will bring great errors, even make engineering disaster. If the fluid in the fractures doesn’t abide by the linear cubic law, the study for themselves’ rules is very important and essential. The rules of nonlinear seepage and non-cubic seepage are reaearched; it is concluded that (1) if the seepage rule deflected the linear cubic law very much, there would exist great differences in water head and flux; if the seepage rule deflected the linear cubic law very little, the diffrerences would also be very little, it can be simplified to linear cubic seepage; (2) if the seepage rule deflected the cubic-law very much, there would exist great differences in water head and flux; if the seepage rule deflected the cubic-law very little, the diffrerences would also be very little, it can be simplified to cubic seepage; (3) for the nonlinear non-cubic seepage, both the nonlinear effect and the non-cubic effect should be taken into account.

Key words: rock mass of fracture network, nonlinearity, non-cube, unsteadiness, seepage

CLC Number: 

  • O 357
[1] SU Yong-hua, LI Cheng-cheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398.
[2] ZUO Yong-zhen, ZHAO Na. Experimental study on the seepage filter protection of core-wall material slurry under extreme conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 520-526.
[3] LIU Cheng-yu, CHEN Bo-wen, LUO Hong-lin, RUAN Jia-chun, . Experimental study of seepage erosion induced by pipeline damage under full pipe flow condition [J]. Rock and Soil Mechanics, 2020, 41(1): 1-10.
[4] WANG Gang, WEI Lin-yi, WEI Xing, ZHANG Jian-min. Permeability evolution of compacted clay during triaxial compression [J]. Rock and Soil Mechanics, 2020, 41(1): 32-38.
[5] XIA Cai-chu, YU Qiang-feng, QIAN Xin, GUI Yang, ZHUANG Xiao-qing. Experimental study of shear-seepage behaviour of rock joints under constant normal stiffness [J]. Rock and Soil Mechanics, 2020, 41(1): 57-66.
[6] ZHI Yong-yan, DENG Hua-feng, XIAO Yao, DUAN Ling-ling, CAI Jia, LI Jian-lin. Analysis of seepage characteristics of fractured rock mass reinforced by microbial grouting [J]. Rock and Soil Mechanics, 2019, 40(S1): 237-244.
[7] XU Jiang, WU Jun-yu, LIU Yi-xin, LIE Jiao, . Experimental study of shear-seepage coupling properties of rock mass under different filling degrees [J]. Rock and Soil Mechanics, 2019, 40(9): 3416-3424.
[8] LI Jing-jing, KONG Ling-wei, . Creep properties of expansive soil under unloading stress and its nonlinear constitutive model [J]. Rock and Soil Mechanics, 2019, 40(9): 3465-3475.
[9] WANG Peng-fei, TAN Wen-hui, MA Xue-wen, LI Zi-jian, LIU Jing-jun, WU Yang-fan. Experimental study of seepage characteristics of consecutive and filling fracture with different roughness levels and gap-widths [J]. Rock and Soil Mechanics, 2019, 40(8): 3062-3070.
[10] ZHANG Tian-jun, PANG Ming-kun, JIANG Xing-ke, PENG Wen-qing, JI Xiang, . Influence of negative pressure on gas percolation characteristics of coal body in perforated drilling hole [J]. Rock and Soil Mechanics, 2019, 40(7): 2517-2524.
[11] MA Qiu-feng, QIN Yue-ping, ZHOU Tian-bai, YANG Xiao-bin. Mechanical properties and constitutive model of porous rock under loading and unloading [J]. Rock and Soil Mechanics, 2019, 40(7): 2673-2685.
[12] CAO Hong, HU Yao, LUO Guan-yong. Research on approximate calculation method for incomplete wells with filter screen ends away from the confined aquifer level [J]. Rock and Soil Mechanics, 2019, 40(7): 2774-2780.
[13] LIU Meng-shi, LUO Qiang, JIANG Liang-wei, LU Qing-yuan, LIANG Duo-wei, . Boundary pore characteristics and optimal treatment thickness in seepage test of coarse grained soil [J]. Rock and Soil Mechanics, 2019, 40(5): 1787-1796.
[14] XU Qiang, XIAO Ming, CHEN Jun-tao, NI Shao-hu, . Solution to seepage monitoring data deficiency and judgement of seepage stability [J]. Rock and Soil Mechanics, 2019, 40(4): 1526-1534.
[15] XIE Qiang, TIAN Da-lang, LIU Jin-hui, ZHANG Jian-hua, ZHANG Zhi-bin, . Simulation of seepage flow on soil slope and special stress-correction technique [J]. Rock and Soil Mechanics, 2019, 40(3): 879-892.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIAO Yun-hua, WANG Qing, CHEN Jian-ping. Application of method for weight calculation based on optimization technique to evaluate rock mass quality[J]. , 2009, 30(9): 2686 -2690 .
[2] FAN Qing-lai, LUAN Mao-tian, LIU Zhan-ge. Numerical simulation of penetration resistance of T-bar penetrometer in soft clay[J]. , 2009, 30(9): 2850 -2854 .
[3] WANG Xiao-jun, QU Yao-hui, WEI Yong-liang, YANG Yin-hai, DA Yi-zheng. Settlement observation and prediction research of test embankment in collapsible loess area along Zhengzhou-Xi'an passenger dedicated line[J]. , 2010, 31(S1): 220 -231 .
[4] QIAN Jian-gu, Lü Xi-lin, HUANG Mao-song. Softening characteristics of soils and constitutive modeling under plane strain condition[J]. , 2009, 30(3): 617 -622 .
[5] LI Xin-ping, MENG Jian, XU Peng-cheng. Study of blasting seismic effects of cable shaft in Xiluodu hydropower station[J]. , 2011, 32(2): 474 -480 .
[6] ZHAO Bao-you, MA Zhen-yue, LIANG Bing, JIN Chang-yu. Seismic analysis of underground structures based on damaged plasticity model[J]. , 2009, 30(5): 1515 -1521 .
[7] GONG Yan-feng,ZHANG Jun-ru. Study of design methodology and application of tunnel single layer lining[J]. , 2011, 32(4): 1062 -1068 .
[8] CAI Guo-qing, ZHAO Cheng-gang, LIU Yan. An indirect method for predicting permeability coefficients of unsaturated soils at different temperatures[J]. , 2011, 32(5): 1405 -1410 .
[9] CHANG Fang-qiang ,JIA Yong-gang. Liquefaction characteristics of silts with different strengths at Yellow River estuary[J]. , 2011, 32(9): 2692 -2696 .
[10] CHEN Yong , BAI Jian-biao , ZHU Tao-lei , YAN Shuai , ZHAO She-hui , LI Xue-chen . Mechanisms of roadside support in gob-side entry retaining and its application[J]. , 2012, 33(5): 1427 -1432 .