›› 2009, Vol. 30 ›› Issue (S1): 110-115.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of rolling-sliding transition and friction coefficients of particles

SUN Shan-shan, SU Yong, JI Shun-ying   

  1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116023, China
  • Received:2009-05-25 Online:2009-08-10 Published:2011-03-16

Abstract:

The rolling-sliding friction is important to the dynamics of granular materials on micro and macro scales. In the granular flow dynamics, the sliding friction has been investigated well, but the mechanism of rolling friction is paid less attention before. The rolling friction is influenced by many factors, and there is no unified theory to describe the rolling friction. The experiment for friction coefficients under the influences of normal loads, roughness of contact surfaces, particle shapes has been carried out; and the transition mechanism of the rolling-sliding friction is studied. It is shown that the particle performs sliding when the particle shape is quite irregular and the contact surface is too smooth; otherwise, the particle performs rolling. Moreover, the sliding friction coefficient and rolling friction coefficient are measured under various particle shapes and surface roughnesses.

Key words: granular material, rolling friction, sliding friction, transition mechanism, mechanical experiment

CLC Number: 

  • TU 443
[1] FU Long-long, ZHOU Shun-hua, TIAN Zhi-yao, TIAN Zhe-kan, . Force chain evolution in granular materials during biaxial compression [J]. Rock and Soil Mechanics, 2019, 40(6): 2427-2434.
[2] LIU Zhen, ZHOU Cui-ying, LU Yi-qi, LIN Zhen-zhen, LIANG Yan-hao, GE Xing-xing, HE Xin-fu,. Development of the multi-scale mechanical experimental system for rheological damage effect of soft rock bearing the hydro-mechanical coupling action [J]. , 2018, 39(8): 3077-3086.
[3] LIU Yang, LI Shuang. Numerical simulation and analysis of meso-mechanical structure characteristic at critical state for granular media [J]. , 2018, 39(6): 2237-248.
[4] LUO Gang, MEI Xue-feng, SHI Lu-bing, HU Xie-wen, JIN Tao, . Tribological characteristics of high-speed rolling limestone [J]. , 2018, 39(2): 474-482.
[5] XUE Long, WANG Rui, ZHANG Jian-min, . DEM numerical test method for granular matter under complex 3D loading [J]. Rock and Soil Mechanics, 2018, 39(12): 4681-4690.
[6] WANG Yin, AI Jun, YANG Qing,. A CFD-DEM coupled method incorporating soil inter-particle rolling resistance [J]. , 2017, 38(6): 1771-1780.
[7] GUO Xing-wen, ZHAO Qian, GU Shui-tao, CAI Xin, . Creep property of granular materials based on viscoelastic interface between micro structural granular [J]. , 2016, 37(S2): 105-112.
[8] ZHANG Duo , LIU Yang , WU Shun-chuan , . Simulation of strength characteristics of granular materials in true triaxial test for different stress paths and its mesoscopic mechanism analysis [J]. , 2016, 37(S1): 509-520.
[9] YI Ying, ZHOU Wei, MA Gang, YANG Li-fu, CHANG Xiao-lin, . Study of rheological behaviors of granular materials based on exact scaling laws [J]. , 2016, 37(6): 1799-1808.
[10] JIANG Ming-jing , JIN Shu-lou , ZHANG Ning , . Unified expression for bonding strength of cemented granules with different bond sizes [J]. , 2015, 36(9): 2451-2457.
[11] CAO Shuai , DU Cui-feng , TAN Yu-ye , FU Jian-xin , . Mechanical model analysis of consolidated filling pillar using stage-delayed backfill in metal mines [J]. , 2015, 36(8): 2370-2376.
[12] HU Yong-qiang , TANG Lian-sheng , LI Zhao-yuan,. Mechanism of sliding friction at pile-soil interface of jacked pile [J]. , 2015, 36(5): 1288-1294.
[13] LIU Ying-jing , LI Gang , YIN Zhen-yu , XIA Xiao-he , WANG Jian-hua,. Influence of grain gradation on undrained mechanical behavior of granular materials [J]. , 2015, 36(2): 423-429.
[14] DONG Qi-peng ,YAO Hai-lin ,LU Zheng ,ZHAN Yong-xiang,. Stress-strain relationship of granular materials based on two cell systems [J]. , 2014, 35(7): 2071-2078.
[15] YU Cun , CHU Xi-hua , TANG Hong-xiang , XU Yuan-jie . Study of effect of particle breakage based on Cosserat continuum [J]. , 2013, 34(S1): 67-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[5] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[6] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[7] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[8] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[9] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[10] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .