›› 2015, Vol. 36 ›› Issue (2): 423-429.doi: 10.16285/j.rsm.2015.02.017

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Influence of grain gradation on undrained mechanical behavior of granular materials

LIU Ying-jing1, 2, 3, LI Gang2, 4, YIN Zhen-yu1, 2, XIA Xiao-he1, WANG Jian-hua1   

  1. 1. Department of Civil Engineering, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China; 2. Research Institute in Civil and Mechanical Engineering, UMR CNRS, 6183, Ecole Centrale Nantes, Nantes 44300, France; 3. Shanghai Tunnel Engineering & Rail Transit Design and Research Institute, Shanghai 200235, China; 4. CCCC Third Harbor Consultants Co., Ltd., Shanghai 200032, China
  • Received:2013-10-28 Online:2015-02-11 Published:2018-06-13

Abstract: This paper studies the influence of grain gradation on the undrained mechanical behavior of granular materials. A series of conventional undrained triaxial compression tests is carried out on two different materials (glass balls and Hostun sand), which have high degree of shape self-similarity. For each material, 6 samples with similar relative density and different gradations ( 1.1-20) are prepared, and then the samples are sheared. Test results show that the grain gradation has an obvious impact on the undrained mechanical behavior of granular material: both deviatoric stress level and undrained shear strength of two material samples decreases as the coefficient of uniformity ( ) of the material increases, their variations tend to converge as coefficient of uniformity surpasses 5. Based on the evolution of the value of the second-order work of the granular assembly during undrained triaxial loading, potential instability for the selected granular materials is also analyzed. The results demonstrate a significant influence of the grain gradation on stability: the higher of coefficient of uniformity ( ), the larger of the potential of static liquefaction and the unstabler of materials.

Key words: grain gradation, undrained triaxial test, instability, relative density, granular material

CLC Number: 

  • TU 411
[1] FU Long-long, ZHOU Shun-hua, TIAN Zhi-yao, TIAN Zhe-kan, . Force chain evolution in granular materials during biaxial compression [J]. Rock and Soil Mechanics, 2019, 40(6): 2427-2434.
[2] ZHU Ren-jie, CHE Ai-lan, YAN Fei, WEN Hai, GE Xiu-run, . Dynamic evolution of rock slope with connective structural surface [J]. Rock and Soil Mechanics, 2019, 40(5): 1907-1915.
[3] JIANG Hai-ming, LI Jie, WANG Ming-yang, . Theoretical and experimental research on the low-friction effect in slip stability of blocky rock mass [J]. Rock and Soil Mechanics, 2019, 40(4): 1405-1412.
[4] ZHOU Zi-han, CHEN Zhong-hui, ZHANG Ling-fan, NIAN Geng-qian, WANG Jian-ming, JIAO Xing-fei. Energy principle based catastrophe study of slope stability in open-pit excavation [J]. Rock and Soil Mechanics, 2019, 40(12): 4881-4889.
[5] JU Neng-pan, DENG Tian-xin, LI Long-qi, JIANG Jin-yang, ZHANG Chen-yang. Centrifugal shaking table test on toppling deformation mechanism of steep bedding slope under strong earthquake [J]. Rock and Soil Mechanics, 2019, 40(1): 99-108.
[6] QIN Qing-ci, LI Ke-gang, YANG Bao-wei, WANG Ting, ZHANG Xue-ya, GUO Wen. Analysis of damage characteristics of key characteristic points in rock complete stress-strain process [J]. Rock and Soil Mechanics, 2018, 39(S2): 14-24.
[7] MA Rui-nan, GUO Hong-xian, CHENG Xiao-hui, LIU Jing-ru, . Permeability experiment study of calcareous sand treated by microbially induced carbonate precipitation using mixing methods [J]. Rock and Soil Mechanics, 2018, 39(S2): 217-223.
[8] LIU Yang, LI Shuang. Numerical simulation and analysis of meso-mechanical structure characteristic at critical state for granular media [J]. , 2018, 39(6): 2237-248.
[9] ZHANG Shi-chuan, GUO Wei-jia, XU Cui-cui, . Accelerated synergistic failure mechanism of defected rock mass and precursor information identification [J]. , 2018, 39(3): 889-898.
[10] Lü Qian, ZHANG Yun, LI Zhao-hua, TAO Zhi-gang, HE Man-chao, . Quasi-static-dynamic transformation numerical analysis of rock landslide based on the second-order work criterion [J]. , 2018, 39(3): 1091-1099.
[11] ZHANG Ming, JIANG Fu-xing, LI Jia-zhuo, JIAO Zhen-hua, HU Hao, SHU Cou-xian, GAO Hua-jun,. Stability of coal pillar on the basis of the co-deformation of thick rock strata and coal pillar [J]. , 2018, 39(2): 705-714.
[12] XUE Long, WANG Rui, ZHANG Jian-min, . DEM numerical test method for granular matter under complex 3D loading [J]. Rock and Soil Mechanics, 2018, 39(12): 4681-4690.
[13] WANG Yin, AI Jun, YANG Qing,. A CFD-DEM coupled method incorporating soil inter-particle rolling resistance [J]. , 2017, 38(6): 1771-1780.
[14] GUO Xing-wen, ZHAO Qian, GU Shui-tao, CAI Xin, . Creep property of granular materials based on viscoelastic interface between micro structural granular [J]. , 2016, 37(S2): 105-112.
[15] ZHANG Duo , LIU Yang , WU Shun-chuan , . Simulation of strength characteristics of granular materials in true triaxial test for different stress paths and its mesoscopic mechanism analysis [J]. , 2016, 37(S1): 509-520.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[3] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[4] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[5] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[6] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[7] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[8] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[9] YANG Zhao-liang, SUN Guan-hua, ZHENG Hong. Global method for stability analysis of slopes based on Pan’s maximum principle[J]. , 2011, 32(2): 559 -563 .
[10] WANG Guang-jin,YANG Chun-he ,ZHANG Chao,MA Hong-ling,KONG Xiang-yun ,HO. Research on particle size grading and slope stability analysis of super-high dumping site[J]. , 2011, 32(3): 905 -913 .