›› 2009, Vol. 30 ›› Issue (S1): 215-219.

• Numerical Analysis • Previous Articles     Next Articles

Numerical implementations and discussion on hypoplastic model for granular materials based on ABAQUS

CHU Xi-hua, XU Yuan-jie, ZHANG Ming-long, YU Cun   

  1. School of Civil and Archifectural Engineering, Wuhan University, Wuhan 430072, China
  • Received:2009-05-27 Online:2009-08-10 Published:2011-03-16

Abstract:

The constitutive relation of hypoplastic model for granular materials is represented by Jaumann stress rate and deformation rate, the tangential stiffness matrix for finite element simulation of hypoplasticity is given based on Gudehus-Bauer model with Jaumann rate of Cauchy stress and deformation rate, and it is illustrated that the numerical implementations of hypoplastic model based on ABAQUS must resort to UEL interface proper. For simplifying the of programming development, two methods for tangential modulus matrix are suggested combing with finite element method, viz. tangential modulus matrix based on general invert of matrix and approximate tangential modulus matrix, so numerical methods for implementations of hypoplastic model by UMAT interface are formed. By the approach suggested; the complexity of programming is reduced; and the post processing of ABAQUS can be utilized, so the work efficiency is improved. Numerical examples show the validity of methods suggested and fensibility of programming code.

Key words: granular materials, hypoplastic model, tangential stiffness matrix, tangential module matrix, ABAQUS

CLC Number: 

  • O347
[1] LIU Qing-bin, PAN Mao, LIU Jie, GUO Yan-jun, ZHANG Xiao-shuang, YAO Jian-peng, LI Fang-yu, . Paraview visualization and virtual reality of output of finite element analysis in Abaqus [J]. Rock and Soil Mechanics, 2019, 40(12): 4916-4924.
[2] ZHOU Jia-jin, GONG Xiao-nan, YAN Tian-long, ZHANG Ri-hong, . Behavior of sand filled nodular piles under compression in soft soil areas [J]. , 2018, 39(9): 3425-3432.
[3] XIAO Yong-jie, CHEN Fu-quan, DONG Yi-zhi . Penetration speed of sleeve for cast-in-place pile installed in sand by high frequency vibratory hammers using Gudehus-Bauer hypoplastic model [J]. , 2018, 39(8): 3011-3019.
[4] CUI Xuan, DONG Wei-xin, ZHOU Han-min, SUN Shu-wei,. Secondary development of a constitutive model in ABAQUS for tailings sand using generalized plasticity theory [J]. , 2018, 39(2): 745-752.
[5] GUO Yang, LI Qing, XU Wen-long, QIAN Lu, TIAN Ce. Dynamic fracture process of a pre-crack under linear charge explosion [J]. , 2018, 39(10): 3882-3890.
[6] WANG Ren-chao, CAO Ting-ting, LIU Yan-ru. Implementations of hypoplastic model based on different time integration algorithms [J]. , 2017, 38(5): 1510-1516.
[7] GUO Xing-wen, ZHAO Qian, GU Shui-tao, CAI Xin, . Creep property of granular materials based on viscoelastic interface between micro structural granular [J]. , 2016, 37(S2): 105-112.
[8] ZHANG Duo , LIU Yang , WU Shun-chuan , . Simulation of strength characteristics of granular materials in true triaxial test for different stress paths and its mesoscopic mechanism analysis [J]. , 2016, 37(S1): 509-520.
[9] GONG Di-guang, QU Zhan-qing, LI Jian-xiong, QU Guan-zheng, CAO Yan-chao, GUO Tian-kui. Extended finite element simulation of hydraulic fracture based on ABAQUS platform [J]. , 2016, 37(5): 1512-1520.
[10] LI Ming , GUO Pei-jun , LIANG Li , LI Xin,. Hydraulic fracturing characteristics of heterogeneous rock with hard inclusion distributed [J]. , 2016, 37(11): 3130-3136.
[11] LIU Run , LIU Wen-bin , HONG Zhao-hui , WANG Le,. A soil resistance model for subsea pipeline global lateral buckling analysis [J]. , 2015, 36(9): 2433-2441.
[12] CHEN Long,CHU Xi-Hua,XU Yuan-Jie. Modelling behavior of dense sand subjected to cyclic loading based on CLoE hypoplastic model [J]. , 2015, 36(6): 1598-1605.
[13] DONG Qi-peng ,YAO Hai-lin ,LU Zheng ,ZHAN Yong-xiang,. Stress-strain relationship of granular materials based on two cell systems [J]. , 2014, 35(7): 2071-2078.
[14] WEI Li-min, FENG Sheng-yang, HE Qun, YANG Qi. Improved Koppejan creep model and its application [J]. , 2014, 35(6): 1762-1767.
[15] ZHOU Jia-jin , WANG Kui-hua , GONG Xiao-nan , ZHANG Ri-hong , YAN Tian-long , XU Yuan-rong,. Bearing capacity and load transfer mechanism of static drill rooted nodular piles [J]. , 2014, 35(5): 1367-1376.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, LI Shu-cai, WANG Ming-bin. Study of stability of anchoring jointed rockmass under seepage pressure[J]. , 2009, 30(9): 2843 -2849 .
[2] LIU Yu-cheng,CAO Shu-gang,LIU Yan-bao. Discussion on some time functions for describing dynamic course of surface subsidence due to mining[J]. , 2010, 31(3): 925 -931 .
[3] LIU En-long. Breakage mechanics for geomaterials: Breakage mechanism of structural blocks and binary-medium model[J]. , 2010, 31(S1): 13 -22 .
[4] JIE Yu-xin, YANG Guang-hua. Modification of elastoplastic models based on generalized potential theory[J]. , 2010, 31(S2): 38 -42 .
[5] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[6] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[7] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[8] CHEN Lin, ZHANG Yong-xing, RAN Ke-xin. A method for calculating active earth pressure considering shear stress[J]. , 2009, 30(S2): 219 -223 .
[9] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[10] WANG Yun-Gang ,ZHANG Guang ,HU Qi. Study of force characteristics of battered pile foundation[J]. , 2011, 32(7): 2184 -2190 .