Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (8): 2232-2241.doi: 10.16285/j.rsm.2023.1862

• Fundamental Theory and Experimental Research • Previous Articles     Next Articles

Plate impact test of coral reef limestone and its state equation

MA Lin-jian, DENG Jia-jun, WANG Ming-yang, LI Hong-ya, LI Zeng, LI Gan   

  1. State Key Laboratory of Disaster Prevention and Mitigation of Explosion and Impact, Army Engineering University of PLA, Nanjing, Jiangsu 210007, China
  • Received:2023-12-14 Accepted:2024-05-14 Online:2024-08-10 Published:2024-08-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China for Excellent Youth Program (52222110) and the General Program of Natural Science Foundation of Jiangsu Provincial (BK20211230) and the 2023 National Key Research and Development Program of China.

Abstract:

To study the shock compression behavior and equation of state of shallow coral reef limestone subjected to high-intensity dynamic loadings, we conducted plate impact tests using a one-stage gas gun technique at impact velocities ranging from 200 m/s to 500 m/s. Based on the particle velocity histories of samples free surface which were obtained by all-fiber displacement interferometer system for any reflectors, the interaction between the shock wave propagation and the evolution of internal pores was analyzed. The dynamic strength and the shock adiabatic relationship of shallow coral reef limestone under one-dimensional strain shock wave loading were determined. The results indicate that the shock wave expands into a two-wave configuration, comprising an elastic precursor wave and a deformation wave, within the tested samples. This phenomenon arises from irreversible plastic deformation mechanisms, including pore collapse and matrix slippage, under shock wave compression. The propagation speed and energy of deformation waves increase with rising impact pressure. The Hugoniot elastic limit value and dynamic yield strength of shallow coral reef limestone are 0.109±0.03 GPa and 0.074±0.02 GPa respectively under the strain rate range from 2.9×104 s−1 to 7.5×104 s−1.    A Hugoniot linear relationship for shallow coral reef limestone was established within the pressure range of 0.4 GPa to 1.2 GPa, and the corresponding pressure-specific volume curve exhibits distinct elastic and compaction stages. It is also found that compared with the shock adiabatic data of terrigenous porous limestone, the shallow coral reef limestone shows greater compressibility under intensive dynamic loadings. Eventually, the P-a QUOTE

Key words: rock dynamic mechanics, coral limestone, plate impact, pore evolution, shock response, equation of state

CLC Number: 

  • TU 452
[1] MA Shuang-xing, SHEN Chao-min, LIU Si-hong, WANG Xing, LI Jian, ZHANG Meng-yao. Prediction method for gradation-related mechanical behaviors of rockfill materials [J]. Rock and Soil Mechanics, 2025, 46(11): 3462-3472.
[2] KOCHARYAN Gevorg, OSTAPCHUK Alexey, SHATUNOV Ivan, QI Cheng-zhi. Stabilization of slip behavior of a clay-bearing fault [J]. Rock and Soil Mechanics, 2025, 46(11): 3513-3522.
[3] XIE Li-fu, GUAN Zhen-chang, HUANG Ming, QIU Hua-sheng, XU Chao. Shield-soil interaction model and numerical solution methodology considering active articulation system [J]. Rock and Soil Mechanics, 2025, 46(11): 3574-3584.
[4] ZHANG Xin-ye, LIU Zhi-wei, WENG Xiao-lin, LI Xuan-cong, ZHAO Jian-chong, LIU Xiao-guang. Stability and failure mode analysis of tunnel face in composite ground with upper sand and lower clay layers [J]. Rock and Soil Mechanics, 2025, 46(11): 3637-3648.
[5] WANG Shuai, WANG Yu-hui, WANG Ling, LI Jia-qi, ZHAO Zi-hao, PANG Kai-xuan, . Influence mechanism of rock pore structure and mineral composition on crack propagation based on grain based model [J]. Rock and Soil Mechanics, 2025, 46(10): 3289-3301.
[6] SUN Chuang, PU Yun-bo, AO Yun-he, TAO Qi, . Mechanical properties of freeze-thaw water-saturated fissured sandstone and its characterization of fine-scale fracture evolution [J]. Rock and Soil Mechanics, 2025, 46(8): 2339-2352.
[7] SHEN Yang, SHEN Jia-yi, LIANG Hui, FAN Ke-wei. Triaxial tests on simulated calcareous sand based on 3D printing technology [J]. Rock and Soil Mechanics, 2025, 46(8): 2353-2362.
[8] WANG Bing-wen, LIU Chen-yi, KANG Ming-chao, LI Qian-long, YANG Lei, ZHOU Sen-lin, QIAN Lei. Investigation of damage mechanism and crack propagation in rock mass with open fracture incorporating T-stress effect [J]. Rock and Soil Mechanics, 2025, 46(8): 2409-2420.
[9] LIU Wen, FAN Jin-yang, LIU Wen-hao, CHEN Jie, LIU Wei, WU Fei, . Stress relaxation characteristics of salt rock under the action of air barometric stress coupling [J]. Rock and Soil Mechanics, 2025, 46(8): 2434-2448.
[10] WU Bing, SHENG Jian-long, YE Zu-yang, ZHOU Xin, . Nonlinear seepage-normal stress coupling model for single fracture of rock mass [J]. Rock and Soil Mechanics, 2025, 46(8): 2495-2504.
[11] LI Man, XIN Hao-zhe, LIU Xian-shan, ZHANG Fan, HU Dai-wei, YANG Fu-jian, . Numerical study on mixed-mode fracture of rock mass based on modified phase field model [J]. Rock and Soil Mechanics, 2025, 46(8): 2600-2612.
[12] XIAO Zhi-yong, WANG Gang, LIU Jie, DENG Hua-feng, ZHENG Cheng-cheng, JIANG Feng, . Improved apparent permeability model based on equivalent fractures and variable slip effects analysis [J]. Rock and Soil Mechanics, 2025, 46(5): 1466-1479.
[13] LI Shao-jun, ZHANG Shi-shu, LI Yong-hong, LIU Xiu-yang, LI Zhi-guo, XU Ding-ping, CHENG Li-juan, JIANG Quan, TANG Da-ming, CHEN Gang, . Failure mechanism and stability control of hard rock in extremely high stress large underground powerhouse of Shuangjiangkou hydropower station [J]. Rock and Soil Mechanics, 2025, 46(5): 1581-1594.
[14] ZHANG Yan-bo, ZHOU Hao, LIANG Peng, YAO Xu-long, TAO Zhi-gang, LAI You-bang, . Acoustic emission location method of rock based on time precise picking and intelligent optimization algorithm [J]. Rock and Soil Mechanics, 2025, 46(5): 1643-1656.
[15] WANG Xin, XING An-kang, ZENG Zi-qiang, JIANG Yi, XU Jian-yu, WANG Xiao-nan, LIU Zao-bao, . Experiment of shear mechanical properties of layered iron ore [J]. Rock and Soil Mechanics, 2025, 46(4): 1039-1048.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!