Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (11): 3573-3582.doi: 10.16285/j.rsm.2020.0237

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis of the bearing characteristics of single pile under the T→V loading path in clay ground

JIANG Jie1, 2, 3, WANG Shun-wei1, 2, 3, OU Xiao-duo1, 2, 3, FU Chen-zhi1, 2, 3   

  1. 1. College of Civil Engineering and Architecture, Guangxi University, Nanning, Guangxi 530004, China; 2. Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning, Guangxi 530004, China; 3. Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning, Guangxi 530004, China
  • Received:2020-02-25 Revised:2020-04-13 Online:2020-11-11 Published:2020-12-24
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52068004, 51568006, 51978179), the Natural Science Foundation of Guangxi Province (2018JJA160134) and Guangxi Key Research and Development Program (AB19245018).

Abstract: To explore the bearing characteristics of single pile under the combined action of torque (T) and vertical load (V) on the pile top in clay foundation, vertical load was applied after preloading the torque to pile top. Based on the results of laboratory model tests and combined with the boundary element method, a reasonable assumption was made for the vertical ultimate friction resistance of pile side under the T→V loading path. The nonlinear solution of single pile under the T→V loading path was obtained by MATLAB programming, and then the bearing capacity envelope was plotted. To facilitate its application in engineering design, the expression of the failure envelops for the bearing capacity of single pile under the T→V loading path was obtained by fitting the experimental data. The results show that the vertical bearing capacity decreases with the increase of torque on single pile, and the T-V combination effect becomes more obvious when the torque load exceeds one third of the limit value. Both the bearing capacity and the deforming resistance of single pile are strengthened with the increase of length-diameter ratio, and the deformation of pile shaft mainly occurs in the range of 0~0.6L. Therefore, the reinforcement of shallow foundation can effectively reduce the deformation. The vertical ultimate bearing capacity of single pile improved with the increase of elastic modulus of pile shaft under the T→V loading path. Nevertheless, the vertical ultimate bearing capacity was only increased by 26.74% when the elastic modulus of single pile increased by 10 times. Therefore, it is not advisable to improve the ultimate bearing capacity of pile-soil system by increasing the concrete grade.

Key words: T→V loading path, single pile, model test, boundary element method, bearing characteristics

CLC Number: 

  • TU 473
[1] LAI Zhi-qiang, BAI Sheng-yuan, CHEN Lin, ZOU Wei-lie, XU Shu-ling, ZHAO Lian-jun, . Experimental study of dewatering characteristics of ring-type tube stockyard sludge storage [J]. Rock and Soil Mechanics, 2025, 46(9): 2805-2815.
[2] HUANG Da-wei, LU Wen-jian, LUO Wen-jun, YU Jue, . An experimental study on the influence of synchronous grouting during shield tunnel construction on vertical displacement and surrounding earth pressure in sandy soil [J]. Rock and Soil Mechanics, 2025, 46(9): 2837-2846.
[3] SONG Wei-tao, ZHANG Pei, DU Xiu-li, LIN Qing-tao, . Influence of soil property on ground response during construction of shallow shield tunnel [J]. Rock and Soil Mechanics, 2025, 46(7): 2179-2188.
[4] YANG Bai, QIN Chao, ZHANG Yin-hai, WANG Wei, XIAO Shi-guo, . Model tests on bearing characteristics of pile with high rock-socketed ratio above an underlying karst cave [J]. Rock and Soil Mechanics, 2025, 46(6): 1839-1850.
[5] SHI Zhan, ZHANG Tie-jun, LI Mei-xiang, TAO Si-ji, BO Yin, LI Yun-bo, . Model test of horizontal freezing reinforcement in mud tank of slurry balanced shield [J]. Rock and Soil Mechanics, 2025, 46(5): 1534-1544.
[6] CHAI Hong-tao, WEN Song-lin, . Centrifugal model test on characteristics of pile foundation bearing capacity failure envelope curve under combined loading [J]. Rock and Soil Mechanics, 2025, 46(5): 1556-1562.
[7] YANG Ming-hui, CAI Ming-hui, CHEN Bo, YANG Han, . A method for calculating horizontal impedance of a single pile considering wave-induced seabed dynamic response [J]. Rock and Soil Mechanics, 2025, 46(5): 1563-1572.
[8] REN Yi-qing, CHEN Bao-guo, REN Guo-qing, YANG Zhen-zhong, XU Fang. Stress characteristics of high-fill box culvert with soft layers placed on the top and sidewall during construction [J]. Rock and Soil Mechanics, 2025, 46(4): 1153-1162.
[9] PEI Yuan-yuan, LONG Jian-hui, GUO Shi-yi, AN Cheng-ji, WENG Hang-yu, ZHANG Ji-ning, . Model test study on stress-strain characteristics of angled reinforced soil retaining wall under different loads [J]. Rock and Soil Mechanics, 2025, 46(2): 539-550.
[10] WANG Bing, HU Xiao-bo, KONG Nan-nan. Experimental study on vacuum combined with electro-osmosis for reinforcing ultrafine particle dredged soil [J]. Rock and Soil Mechanics, 2025, 46(11): 3523-3533.
[11] LIU Wen-jing, DENG Hui, ZHOU Xin. Dynamic response of high steep rock slope with a double-layer ductile shear zone under earthquake action [J]. Rock and Soil Mechanics, 2025, 46(11): 3534-3548.
[12] CHEN Huai-lin, YANG Tao, RAO Yun-kang, ZHANG Zhe, WU Hong-gang, XIE Jiang-wei, TENG Han-qing. Calculation method of sliding surface stress based on segmented sliding surface stress measurement system [J]. Rock and Soil Mechanics, 2025, 46(11): 3562-3573.
[13] LEI Hua-yang, YANG Yang, XU Ying-gang, . Experimental study on stratum disturbance of shield construction under different tunnel depth conditions [J]. Rock and Soil Mechanics, 2024, 45(S1): 1-12.
[14] LIU Zhi-chun, MA Bo, HU Zhi-nan, ZHANG Zhen-bo, DU Kong-ze, . Experimental study on distribution pattern of active earth pressure of foundation pit adjacent to an underground structure [J]. Rock and Soil Mechanics, 2024, 45(S1): 33-41.
[15] SUN Min-yang, WANG Zhong-jin, XIE Xin-yu, ZHANG Ri-hong, LOU Yang, ZHU Da-yong, . Model test on thermal-mechanical characteristics of energy pile groups in saturated clay [J]. Rock and Soil Mechanics, 2024, 45(S1): 382-390.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!