Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (12): 3919-3928.doi: 10.16285/j.rsm.2019.1824

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effects of rock contents and particle breakage on strength characteristics of soil-rock aggregate

TU Yi-liang1, 2, 3, 4, LIU Xin-rong5, REN Qing-yang1, 2, CHAI He-jun3, WANG Jun-bao4, YU Jia-yu1   

  1. 1. State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; 2. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 3.China Merchants Chongqing Communications Research & Design Institute Co., Ltd., Chongqing 400067, China; 4. Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China; 5. College of Civil Engineering, Chongqing University, Chongqing 400045, China
  • Received:2019-10-23 Revised:2020-08-10 Online:2020-12-11 Published:2021-01-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51808083), the China Postdoctoral Science Foundation(2020M673110), the Basic Research and Frontier Exploration Project of Chongqing, China(cstc2018jcyjAX0491), the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN201800713), the Opening Foundation of State Key Laboratory of Mountain Bridge and Tunnel Engineering(SKLBT-19-011) and the Opening Foundation of Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering(YT201904).

Abstract: The characteristics of particle breakage and shear strength of soil-rock aggregate with six rock contents under six normal pressures were studied from macro and mecro perspectives by large-scale direct shear test, particle observation test and particle sieving test. The relationship between macroscopic shear strength properties and mecroscopic particle breakage characteristics was established, thus further revealing the influence mechanism of rock content and particle breakage on the shear strength characteristics of soil-rock aggregate. The results showed that particle breakage mainly occurred near the shear plane. The breakage morphology can be divided into surface grinding, local fracture, complete fracture and complete breakage, resulting from the stress concentration caused by uneven contact forces between particles. Due to particle breakage, the content of fine particles increased, coarse grains decreased, and intermediate grains fluctuated. The relative particle breakage Br increased with the increase of normal pressure ?n or rock content P5, which accorded with the function of two variables. With the increase of normal pressure ?n, the shear strength τ increased nonlinearly and met the modified M-C strength criterion. When the rock content P5 increased, the cohesive force c0 of soil-rock aggregate decreased, the internal friction angle ?0 of soil-rock aggregate increased, and the non-linear parameter Δ? increased. Particle breakage was the direct cause of non-linear strength characteristics of soil-rock aggregate.

Key words: soil-rock aggregate, particle breakage, rock content, shear strength characteristic, direct shear test

CLC Number: 

  • TU411.3
[1] LIU Jing, WANG Hao, YANG Xin, SU Jin-chen, ZHANG You-liang, . Field test study on reinforcement of tropical soil slope using microbial induced calcium carbonate precipitation [J]. Rock and Soil Mechanics, 2025, 46(S1): 343-353.
[2] LAO Guo-feng, YANG Jun-sheng, XIE Yi-peng, TANG Chong, XU Zhi-peng, . A peak shear strength model of continuously graded granular soils based on skeleton structure indices [J]. Rock and Soil Mechanics, 2025, 46(8): 2459-2470.
[3] CHEN Jia-rui, FAN Bao-yun, YE Jian-hong, ZHANG Chun-shun, . Particle breakage and its evolution model of calcareous sand through triaxial tests [J]. Rock and Soil Mechanics, 2025, 46(7): 2095-2105.
[4] HU Feng-hui, FANG Xiang-wei, SHEN Chun-ni, WANG Chun-yan, SHAO Sheng-jun, . Experiment on particle breakage, strength, and dilatancy of coral sand under true triaxial conditions [J]. Rock and Soil Mechanics, 2025, 46(7): 2147-2159.
[5] WANG Jia-quan, WU Xin-biao, DONG Cheng-feng, ZHANG Tao-yi, . Direct shear tests on sand-contaminated ballast based on SmartRock sensing technology [J]. Rock and Soil Mechanics, 2025, 46(4): 1060-1070.
[6] SUN Jie-hao, GUO Bao-hua, TIAN Shi-xuan, CHENG Tan, . Experimental study of direct shear failure characteristics of sandstone joints based on characteristic parameters of acoustic emission [J]. Rock and Soil Mechanics, 2024, 45(S1): 167-177.
[7] ZHANG Da-wei, LI Hao-ze, LIU Fei-yu, FENG Min. Effect of particle size ratio on shear characteristics of rubber-sand mixture subject to two-way cyclic loading [J]. Rock and Soil Mechanics, 2024, 45(S1): 239-247.
[8] CHEN Jun-hao, ZHANG Yan-e, WANG Gang, WANG Heng, . An experimental study on consolidated drainage strength of calcareous sand under anisotropic consolidation paths [J]. Rock and Soil Mechanics, 2024, 45(8): 2290-2298.
[9] SUN Jie-hao, GUO Bao-hua, CHENG Sheng-jin, TIAN Shi-xuan, CHEN Yan, . Shear strength characteristics of rock-like joints in different control modes and unloading stress paths [J]. Rock and Soil Mechanics, 2024, 45(7): 2061-2071.
[10] WANG Bu-xue-yan, MENG Qing-shan, QIAN Jian-gu, . Breaking rate of coral sand and gravel based on volume change [J]. Rock and Soil Mechanics, 2024, 45(7): 1967-1975.
[11] LI Ze-chuang, ZHANG Hao, CHENG Pei-feng, WANG Yan-li, . Experimental study on the development process and spatial distribution of shear band of coarse-grained sliding zone soil [J]. Rock and Soil Mechanics, 2024, 45(4): 1067-1080.
[12] WANG Chao-hui, WEN Peng-hui, SONG Liang, NIU Liang-liang, XI He, . Gradation composition design of salt rock aggregate base based on particle breakage characteristics [J]. Rock and Soil Mechanics, 2024, 45(2): 340-352.
[13] ZHANG Ji-ru, CHEN Jing-xin, WANG Lei, PENG Wei-ke . Effect of drainage conditions during triaxial shearing on particle breakage, deformation, and strength properties of calcareous sand [J]. Rock and Soil Mechanics, 2024, 45(2): 375-384.
[14] YANG Yang, WANG Le, MA Jian-hua, TONG Chen-xi, ZHANG Chun-hui, WANG Zhi-chao, TIAN Ying-hui, . Mechanism of submarine pipeline penetration into calcareous sand considering particle breakage effect [J]. Rock and Soil Mechanics, 2024, 45(2): 623-632.
[15] WANG Shu-ying, ZHONG Jia-zheng, NI Zhun-lin, ZHENG Xiang-cou, . Shear behavior of slurry-foam-conditioned poorly graded sand under pressure [J]. Rock and Soil Mechanics, 2024, 45(10): 2879-2888.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!