Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (11): 3090-3100.doi: 10.16285/j.rsm.2021.0396

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Mechanical properties and strength criterion of Zhanjiang structured clay in three-dimensional stress state

LIU Bing-heng1, 2, KONG Ling-wei1, 2, SHU Rong-jun1, 2, LI Tian-guo1, 2   

  1. 1. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-05-13 Revised:2021-07-18 Online:2021-11-11 Published:2021-11-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41877281).

Abstract: In order to investigate the mechanical properties of Zhanjiang structured clay in the three-dimensional stress state and the influence of structure on its strength criterion, a series of undrained true triaxial tests of different intermediate principal stress ratios, b-values, with equal mean principal stress, p-values, and undrained plane strain tests was carried out. The results are as follows. When p is less than or greater than the yield stress of the structure, the q- curves are strain softening and mild strain hardening type in general. The q- curves of true triaxial tests with different b-values are similar in shape. As b-value increases, the large principal strain corresponding to the q peak point shows the decreasing trend. Under different b-values, the effective cohesion decreases with increasing b-values, while the effective friction angle increases with increasing b-values. The effective cohesion and friction angle for the plane strain compression tests are between the effective cohesion and friction angle corresponding to b=0.25 and b=0.50. Influenced by the structure of clay, the strength criterion on π plane is applicable to the Lade-Duncan criterion when p-values are less than the yield stress of structure, while it is more applicable to the generalized nonlinear strength theory based on Mises criterion and Lade-Duncan criterion when p-values are greater than the yield stress of structure. For plane strain tests, the b-values of Zhanjiang clay under plane strain loading and unloading conditions are between 0.18 and 0.29 at failure, and the strength at failure can be approximated by the generalized plane strain strength criterion based on the general Mises and Lade-Duncan plane strain strength criterion.

Key words: Zhanjiang clay, strength criterion, structure, true triaxial test, anisotropy

CLC Number: 

  • TU 470
[1] ZHI Bin, WEI Yuan-jun, WANG Pan, ZHANG Qian, LIU Cun-li, REN Hui-ming, . Correlation mechanism between macroscopic strength and microstructure of undisturbed loess containing Na2SO4 salt under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2025, 46(S1): 106-120.
[2] ZHANG Xing-wen, CAO Jing, LEI Shu-yu, LI Yu-hong, CHENG Yun, ZHANG Ning-rui. Effect of fulvic acid environment on the structure and permeability of cement-soil containing humic acid [J]. Rock and Soil Mechanics, 2025, 46(S1): 249-261.
[3] ZHANG Xian-cheng, CHI Bao-tao, YU Xian-ze, GUO Qian-jian, YUAN Wei, ZHANG Yao-ming, . Unstructured mesh generation and fracture damage analysis in the implementation of peridynamics-based finite element method [J]. Rock and Soil Mechanics, 2025, 46(S1): 467-476.
[4] NIE Yao-wu, HU Bing, GU Lei-yu, LI Bin, ZHOU Quan-chao, LI Wen-hui, LI Qi, LI Xia-ying, . Numerical simulation on safety risk assessment of coal mining with CO2 geological storage [J]. Rock and Soil Mechanics, 2025, 46(S1): 491-506.
[5] LAO Guo-feng, YANG Jun-sheng, XIE Yi-peng, TANG Chong, XU Zhi-peng, . A peak shear strength model of continuously graded granular soils based on skeleton structure indices [J]. Rock and Soil Mechanics, 2025, 46(8): 2459-2470.
[6] XU Wei-wei, XIE Zun-dang, FU Zhong-zhi, MI Zhan-kuan, . Research and application on true triaxial test of coarse-grained soil using Shen’s elastoplastic model [J]. Rock and Soil Mechanics, 2025, 46(8): 2559-2572.
[7] HU Feng-hui, FANG Xiang-wei, SHEN Chun-ni, WANG Chun-yan, SHAO Sheng-jun, . Experiment on particle breakage, strength, and dilatancy of coral sand under true triaxial conditions [J]. Rock and Soil Mechanics, 2025, 46(7): 2147-2159.
[8] LI Xiao-jun, ZHANG Yu-xiao, RONG Mian-shui, NI Ping-he. Bayesian inversion method for soil layer velocity structure and its application [J]. Rock and Soil Mechanics, 2025, 46(7): 2237-2254.
[9] HAN Shi-ying, WANG Hang-long, PENG Jun, ZHU Jun-xing, WANG Lin-fei, PAN Kun, . Experimental investigation on influence of structural plane on rockburst characteristics of hard surrounding rock in a deep-buried tunnel [J]. Rock and Soil Mechanics, 2025, 46(6): 1765-1776.
[10] DING Lan, YANG Hang, LI Tian-jun, WU Qiao-yun, ZHU Hong-ping, . Ultrawide low frequency bandgap characteristics and seismic isolation of surface wave metabarriers with double resonant cavities [J]. Rock and Soil Mechanics, 2025, 46(6): 1907-1918.
[11] CHEN Yi-wei, DONG Ping-chuan, . Dispersion and attenuation of waves in saturated anisotropic fractured rocks [J]. Rock and Soil Mechanics, 2025, 46(6): 1934-1942.
[12] ZHOU Wen-qiang, JIANG Liang-wei, LUO Qiang, XIAO Zhuo-qi, LUO Yi-lian, WEI Ming, . Shaking table test on seismic performance of anchoring frame beam with flexible external anchor heads [J]. Rock and Soil Mechanics, 2025, 46(4): 1163-1173.
[13] YANG Liu, JI Ming-xiu, ZHAO Yan, GENG Zhen-kun, LI Si-yuan, MA Xiong-de, ZHANG Qian, . Influence mechanism of tight sandstone pore structure on two-phase displacement characteristics and CO2 storage efficienc [J]. Rock and Soil Mechanics, 2025, 46(4): 1187-1195.
[14] CAO Su-nan, LI Chun-hong, CHEN Yuan-bing, FEI Kang, . Shear characteristics of biomimetic sand-structure interface under cyclic loading conditions [J]. Rock and Soil Mechanics, 2025, 46(3): 821-832.
[15] LAN Bin-peng, WANG Yan-ping, WANG Wei-guo, WANG Yi-jun, ZHAO Yue, . Experiment on deformation and working mechanism of the pull-pile supporting structure [J]. Rock and Soil Mechanics, 2025, 46(2): 551-562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!