Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (10): 2655-2664.doi: 10.16285/j.rsm.2021.2042

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental research on fracture initiation pressure of conventional triaxial slurry fracturing in similar material of sandy mudstone

CHENG Hua1, 2, 3, LIU Xiang-yang1, 3, CAO Ru-kang1, WANG Xue-song1   

  1. 1. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 2. School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui 230601, China; 3. Anhui Province Key Laboratory of Building Structure and Underground Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China
  • Received:2021-12-06 Revised:2022-06-16 Online:2022-10-19 Published:2022-10-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51874005, 51674006, 51878005).

Abstract:

To further explore the fracture initiation mechanism of fracture grouting in typical sandy mudstone from Huainan and Huaibei mining areas in China, a conventional triaxial fracture grouting test device was developed, and the model test of fracture initiation pressure of slurry fracturing in similar material of sandy mudstone was carried out. Based on the test results, the influences of rock strength and stress state on grouting fracture initiation pressure and fracture propagation pattern were analyzed, and the fracture initiation mechanism of fracture grouting in sandy mudstone was revealed. The results show that there is a positive correlation between the initiation pressure and the compressive strength of rock; the larger the compressive strength of the rock is, the more complex the fracturing path is. The sensitivity of fracture initiation pressure to confining pressure is much greater than that of axial pressure; the larger the stress difference Δσ σ V σ H is, the more regular the fracture shape is. Under the triaxial condition of pore pressure, the rock tensile strength determined by slurry fracturing method in sealed open hole section is approximately 2.5 times the uniaxial tensile strength. The research results can provide a reference for the design and construction of fracture grouting in similar rock strata in the future.

Key words: sandy mudstone, conventional triaxial test, fracture grouting, fracture initiation pressure, model test

CLC Number: 

  • TU 91
[1] LAI Zhi-qiang, BAI Sheng-yuan, CHEN Lin, ZOU Wei-lie, XU Shu-ling, ZHAO Lian-jun, . Experimental study of dewatering characteristics of ring-type tube stockyard sludge storage [J]. Rock and Soil Mechanics, 2025, 46(9): 2805-2815.
[2] HUANG Da-wei, LU Wen-jian, LUO Wen-jun, YU Jue, . An experimental study on the influence of synchronous grouting during shield tunnel construction on vertical displacement and surrounding earth pressure in sandy soil [J]. Rock and Soil Mechanics, 2025, 46(9): 2837-2846.
[3] SONG Wei-tao, ZHANG Pei, DU Xiu-li, LIN Qing-tao, . Influence of soil property on ground response during construction of shallow shield tunnel [J]. Rock and Soil Mechanics, 2025, 46(7): 2179-2188.
[4] YANG Bai, QIN Chao, ZHANG Yin-hai, WANG Wei, XIAO Shi-guo, . Model tests on bearing characteristics of pile with high rock-socketed ratio above an underlying karst cave [J]. Rock and Soil Mechanics, 2025, 46(6): 1839-1850.
[5] SHI Zhan, ZHANG Tie-jun, LI Mei-xiang, TAO Si-ji, BO Yin, LI Yun-bo, . Model test of horizontal freezing reinforcement in mud tank of slurry balanced shield [J]. Rock and Soil Mechanics, 2025, 46(5): 1534-1544.
[6] CHAI Hong-tao, WEN Song-lin, . Centrifugal model test on characteristics of pile foundation bearing capacity failure envelope curve under combined loading [J]. Rock and Soil Mechanics, 2025, 46(5): 1556-1562.
[7] REN Yi-qing, CHEN Bao-guo, REN Guo-qing, YANG Zhen-zhong, XU Fang. Stress characteristics of high-fill box culvert with soft layers placed on the top and sidewall during construction [J]. Rock and Soil Mechanics, 2025, 46(4): 1153-1162.
[8] PEI Yuan-yuan, LONG Jian-hui, GUO Shi-yi, AN Cheng-ji, WENG Hang-yu, ZHANG Ji-ning, . Model test study on stress-strain characteristics of angled reinforced soil retaining wall under different loads [J]. Rock and Soil Mechanics, 2025, 46(2): 539-550.
[9] WANG Bing, HU Xiao-bo, KONG Nan-nan. Experimental study on vacuum combined with electro-osmosis for reinforcing ultrafine particle dredged soil [J]. Rock and Soil Mechanics, 2025, 46(11): 3523-3533.
[10] LIU Wen-jing, DENG Hui, ZHOU Xin. Dynamic response of high steep rock slope with a double-layer ductile shear zone under earthquake action [J]. Rock and Soil Mechanics, 2025, 46(11): 3534-3548.
[11] CHEN Huai-lin, YANG Tao, RAO Yun-kang, ZHANG Zhe, WU Hong-gang, XIE Jiang-wei, TENG Han-qing. Calculation method of sliding surface stress based on segmented sliding surface stress measurement system [J]. Rock and Soil Mechanics, 2025, 46(11): 3562-3573.
[12] LEI Hua-yang, YANG Yang, XU Ying-gang, . Experimental study on stratum disturbance of shield construction under different tunnel depth conditions [J]. Rock and Soil Mechanics, 2024, 45(S1): 1-12.
[13] LIU Zhi-chun, MA Bo, HU Zhi-nan, ZHANG Zhen-bo, DU Kong-ze, . Experimental study on distribution pattern of active earth pressure of foundation pit adjacent to an underground structure [J]. Rock and Soil Mechanics, 2024, 45(S1): 33-41.
[14] SUN Min-yang, WANG Zhong-jin, XIE Xin-yu, ZHANG Ri-hong, LOU Yang, ZHU Da-yong, . Model test on thermal-mechanical characteristics of energy pile groups in saturated clay [J]. Rock and Soil Mechanics, 2024, 45(S1): 382-390.
[15] WU Jiu-jiang, XIAO Lin, WANG Li-juan, ZHANG Yi, . Deformation characteristics and failure modes of nodular diaphragm walls based on particle image velocimetry technology [J]. Rock and Soil Mechanics, 2024, 45(9): 2707-2718.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!